能量超临界非线性系统的无条件唯一性

IF 2.4 1区 数学 Q1 MATHEMATICS
Xuwen Chen, Shunlin Shen, Zhifei Zhang
{"title":"能量超临界非线性系统的无条件唯一性","authors":"Xuwen Chen,&nbsp;Shunlin Shen,&nbsp;Zhifei Zhang","doi":"10.1007/s40818-022-00130-9","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the cubic and quintic nonlinear Schrödinger equations (NLS) under the <span>\\({\\mathbb {R}}^{d}\\)</span> and <span>\\({\\mathbb {T}}^{d}\\)</span> energy-supercritical setting. Via a newly developed unified scheme, we prove the unconditional uniqueness for solutions to NLS at critical regularity for all dimensions. Thus, together with [19, 20], the unconditional uniqueness problems for <span>\\(H^{1}\\)</span>-critical and <span>\\(H^{1}\\)</span>-supercritical cubic and quintic NLS are completely and uniformly resolved at critical regularity for these domains. One application of our theorem is to prove that defocusing blowup solutions of the type in [59] are the only possible <span>\\(C([0,T);{\\dot{H}}^{s_{c}})\\)</span> solutions if exist in these domains.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The unconditional uniqueness for the energy-supercritical NLS\",\"authors\":\"Xuwen Chen,&nbsp;Shunlin Shen,&nbsp;Zhifei Zhang\",\"doi\":\"10.1007/s40818-022-00130-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the cubic and quintic nonlinear Schrödinger equations (NLS) under the <span>\\\\({\\\\mathbb {R}}^{d}\\\\)</span> and <span>\\\\({\\\\mathbb {T}}^{d}\\\\)</span> energy-supercritical setting. Via a newly developed unified scheme, we prove the unconditional uniqueness for solutions to NLS at critical regularity for all dimensions. Thus, together with [19, 20], the unconditional uniqueness problems for <span>\\\\(H^{1}\\\\)</span>-critical and <span>\\\\(H^{1}\\\\)</span>-supercritical cubic and quintic NLS are completely and uniformly resolved at critical regularity for these domains. One application of our theorem is to prove that defocusing blowup solutions of the type in [59] are the only possible <span>\\\\(C([0,T);{\\\\dot{H}}^{s_{c}})\\\\)</span> solutions if exist in these domains.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-022-00130-9\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-022-00130-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们考虑能量超临界环境下的三次和五次非线性薛定谔方程(NLS)。通过一个新发展的统一格式,我们证明了NLS解在所有维度的临界正则性下的无条件唯一性。因此,与[19,20]一起,在这些域的临界正则性下,完全一致地解决了\(H^{1}\)-临界和\(H^{1}\)-超临界三次和五次NLS的无条件唯一性问题。我们定理的一个应用是证明[59]中类型的散焦爆破解是唯一可能的\(C([0,T);{\dot{H}}^{s_{C})\)解,如果存在于这些域中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The unconditional uniqueness for the energy-supercritical NLS

The unconditional uniqueness for the energy-supercritical NLS

We consider the cubic and quintic nonlinear Schrödinger equations (NLS) under the \({\mathbb {R}}^{d}\) and \({\mathbb {T}}^{d}\) energy-supercritical setting. Via a newly developed unified scheme, we prove the unconditional uniqueness for solutions to NLS at critical regularity for all dimensions. Thus, together with [19, 20], the unconditional uniqueness problems for \(H^{1}\)-critical and \(H^{1}\)-supercritical cubic and quintic NLS are completely and uniformly resolved at critical regularity for these domains. One application of our theorem is to prove that defocusing blowup solutions of the type in [59] are the only possible \(C([0,T);{\dot{H}}^{s_{c}})\) solutions if exist in these domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信