点涡二维水波Rayleigh-Taylor不稳定性的跃迁

IF 2.4 1区 数学 Q1 MATHEMATICS
Qingtang Su
{"title":"点涡二维水波Rayleigh-Taylor不稳定性的跃迁","authors":"Qingtang Su","doi":"10.1007/s40818-023-00157-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, by considering 2d water waves with a pair of point vortices, we prove the existence of water waves with sign-changing Taylor sign coefficients. That is, the strong Taylor sign condition holds initially, while it breaks down at a later time. Such a phenomenon can be regarded as the transition between the stable and unstable regime in the sense of Rayleigh-Taylor of water waves. As a byproduct, we prove the wellposedness of 2d water waves in Gevrey-2 spaces.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"9 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-023-00157-6.pdf","citationCount":"1","resultStr":"{\"title\":\"On the Transition of the Rayleigh-Taylor Instability in 2d Water Waves with Point Vortices\",\"authors\":\"Qingtang Su\",\"doi\":\"10.1007/s40818-023-00157-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, by considering 2d water waves with a pair of point vortices, we prove the existence of water waves with sign-changing Taylor sign coefficients. That is, the strong Taylor sign condition holds initially, while it breaks down at a later time. Such a phenomenon can be regarded as the transition between the stable and unstable regime in the sense of Rayleigh-Taylor of water waves. As a byproduct, we prove the wellposedness of 2d water waves in Gevrey-2 spaces.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40818-023-00157-6.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-023-00157-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-023-00157-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文通过考虑具有一对点涡的二维水波,证明了具有变符号Taylor符号系数的水波的存在性。也就是说,强泰勒符号条件最初成立,但后来会崩溃。这种现象可以看作是水波瑞利-泰勒意义上的稳定和不稳定状态之间的转换。作为副产品,我们证明了Gevrey-2空间中二维水波的适定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Transition of the Rayleigh-Taylor Instability in 2d Water Waves with Point Vortices

In this paper, by considering 2d water waves with a pair of point vortices, we prove the existence of water waves with sign-changing Taylor sign coefficients. That is, the strong Taylor sign condition holds initially, while it breaks down at a later time. Such a phenomenon can be regarded as the transition between the stable and unstable regime in the sense of Rayleigh-Taylor of water waves. As a byproduct, we prove the wellposedness of 2d water waves in Gevrey-2 spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信