Wan-ting Sun, Li-xia Yan, Shu-chao Li, Xue-chao Li
{"title":"图的Aα-指数的独立数的锐界","authors":"Wan-ting Sun, Li-xia Yan, Shu-chao Li, Xue-chao Li","doi":"10.1007/s10255-023-1049-4","DOIUrl":null,"url":null,"abstract":"<div><p>Given a graph <i>G</i>, the adjacency matrix and degree diagonal matrix of <i>G</i> are denoted by <i>A</i>(<i>G</i>) and <i>D</i>(<i>G</i>), respectively. In 2017, Nikiforov<sup>[24]</sup> proposed the <i>A</i><sub><i>α</i></sub>-matrix: <i>A</i><sub><i>α</i></sub>(<i>G</i>) = <i>αD</i>(<i>G</i>) + (1 − <i>α</i>)<i>A</i>(<i>G</i>), where <i>α</i> ∈ [0, 1]. The largest eigenvalue of this novel matrix is called the <i>A</i><sub><i>α</i></sub>-index of <i>G</i>. In this paper, we characterize the graphs with minimum <i>A</i><sub><i>α</i></sub>-index among <i>n</i>-vertex graphs with independence number <i>i</i> for <i>α</i> ∈ [0, 1), where <span>\\(i = 1,\\,\\,\\left\\lfloor {{n \\over 2}} \\right\\rfloor,\\left\\lceil {{n \\over 2}} \\right\\rceil,\\,\\left\\lfloor {{n \\over 2}} \\right\\rfloor + 1,n - 3,n - 2,n - 1\\)</span>, whereas for <i>i</i> = 2 we consider the same problem for <span>\\(\\alpha \\in [0,{3 \\over 4}]\\)</span>. Furthermore, we determine the unique graph (resp. tree) on <i>n</i> vertices with given independence number having the maximum <i>A</i><sub><i>α</i></sub>-index with <i>α</i> ∈ [0, 1), whereas for the <i>n</i>-vertex bipartite graphs with given independence number, we characterize the unique graph having the maximum <i>A</i><sub><i>α</i></sub>-index with <span>\\(\\alpha \\in [{1 \\over 2},1)\\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp Bounds on the Aα-index of Graphs in Terms of the Independence Number\",\"authors\":\"Wan-ting Sun, Li-xia Yan, Shu-chao Li, Xue-chao Li\",\"doi\":\"10.1007/s10255-023-1049-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a graph <i>G</i>, the adjacency matrix and degree diagonal matrix of <i>G</i> are denoted by <i>A</i>(<i>G</i>) and <i>D</i>(<i>G</i>), respectively. In 2017, Nikiforov<sup>[24]</sup> proposed the <i>A</i><sub><i>α</i></sub>-matrix: <i>A</i><sub><i>α</i></sub>(<i>G</i>) = <i>αD</i>(<i>G</i>) + (1 − <i>α</i>)<i>A</i>(<i>G</i>), where <i>α</i> ∈ [0, 1]. The largest eigenvalue of this novel matrix is called the <i>A</i><sub><i>α</i></sub>-index of <i>G</i>. In this paper, we characterize the graphs with minimum <i>A</i><sub><i>α</i></sub>-index among <i>n</i>-vertex graphs with independence number <i>i</i> for <i>α</i> ∈ [0, 1), where <span>\\\\(i = 1,\\\\,\\\\,\\\\left\\\\lfloor {{n \\\\over 2}} \\\\right\\\\rfloor,\\\\left\\\\lceil {{n \\\\over 2}} \\\\right\\\\rceil,\\\\,\\\\left\\\\lfloor {{n \\\\over 2}} \\\\right\\\\rfloor + 1,n - 3,n - 2,n - 1\\\\)</span>, whereas for <i>i</i> = 2 we consider the same problem for <span>\\\\(\\\\alpha \\\\in [0,{3 \\\\over 4}]\\\\)</span>. Furthermore, we determine the unique graph (resp. tree) on <i>n</i> vertices with given independence number having the maximum <i>A</i><sub><i>α</i></sub>-index with <i>α</i> ∈ [0, 1), whereas for the <i>n</i>-vertex bipartite graphs with given independence number, we characterize the unique graph having the maximum <i>A</i><sub><i>α</i></sub>-index with <span>\\\\(\\\\alpha \\\\in [{1 \\\\over 2},1)\\\\)</span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-023-1049-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1049-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sharp Bounds on the Aα-index of Graphs in Terms of the Independence Number
Given a graph G, the adjacency matrix and degree diagonal matrix of G are denoted by A(G) and D(G), respectively. In 2017, Nikiforov[24] proposed the Aα-matrix: Aα(G) = αD(G) + (1 − α)A(G), where α ∈ [0, 1]. The largest eigenvalue of this novel matrix is called the Aα-index of G. In this paper, we characterize the graphs with minimum Aα-index among n-vertex graphs with independence number i for α ∈ [0, 1), where \(i = 1,\,\,\left\lfloor {{n \over 2}} \right\rfloor,\left\lceil {{n \over 2}} \right\rceil,\,\left\lfloor {{n \over 2}} \right\rfloor + 1,n - 3,n - 2,n - 1\), whereas for i = 2 we consider the same problem for \(\alpha \in [0,{3 \over 4}]\). Furthermore, we determine the unique graph (resp. tree) on n vertices with given independence number having the maximum Aα-index with α ∈ [0, 1), whereas for the n-vertex bipartite graphs with given independence number, we characterize the unique graph having the maximum Aα-index with \(\alpha \in [{1 \over 2},1)\).