图的Aα-指数的独立数的锐界

Pub Date : 2023-06-17 DOI:10.1007/s10255-023-1049-4
Wan-ting Sun, Li-xia Yan, Shu-chao Li, Xue-chao Li
{"title":"图的Aα-指数的独立数的锐界","authors":"Wan-ting Sun,&nbsp;Li-xia Yan,&nbsp;Shu-chao Li,&nbsp;Xue-chao Li","doi":"10.1007/s10255-023-1049-4","DOIUrl":null,"url":null,"abstract":"<div><p>Given a graph <i>G</i>, the adjacency matrix and degree diagonal matrix of <i>G</i> are denoted by <i>A</i>(<i>G</i>) and <i>D</i>(<i>G</i>), respectively. In 2017, Nikiforov<sup>[24]</sup> proposed the <i>A</i><sub><i>α</i></sub>-matrix: <i>A</i><sub><i>α</i></sub>(<i>G</i>) = <i>αD</i>(<i>G</i>) + (1 − <i>α</i>)<i>A</i>(<i>G</i>), where <i>α</i> ∈ [0, 1]. The largest eigenvalue of this novel matrix is called the <i>A</i><sub><i>α</i></sub>-index of <i>G</i>. In this paper, we characterize the graphs with minimum <i>A</i><sub><i>α</i></sub>-index among <i>n</i>-vertex graphs with independence number <i>i</i> for <i>α</i> ∈ [0, 1), where <span>\\(i = 1,\\,\\,\\left\\lfloor {{n \\over 2}} \\right\\rfloor,\\left\\lceil {{n \\over 2}} \\right\\rceil,\\,\\left\\lfloor {{n \\over 2}} \\right\\rfloor + 1,n - 3,n - 2,n - 1\\)</span>, whereas for <i>i</i> = 2 we consider the same problem for <span>\\(\\alpha \\in [0,{3 \\over 4}]\\)</span>. Furthermore, we determine the unique graph (resp. tree) on <i>n</i> vertices with given independence number having the maximum <i>A</i><sub><i>α</i></sub>-index with <i>α</i> ∈ [0, 1), whereas for the <i>n</i>-vertex bipartite graphs with given independence number, we characterize the unique graph having the maximum <i>A</i><sub><i>α</i></sub>-index with <span>\\(\\alpha \\in [{1 \\over 2},1)\\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp Bounds on the Aα-index of Graphs in Terms of the Independence Number\",\"authors\":\"Wan-ting Sun,&nbsp;Li-xia Yan,&nbsp;Shu-chao Li,&nbsp;Xue-chao Li\",\"doi\":\"10.1007/s10255-023-1049-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a graph <i>G</i>, the adjacency matrix and degree diagonal matrix of <i>G</i> are denoted by <i>A</i>(<i>G</i>) and <i>D</i>(<i>G</i>), respectively. In 2017, Nikiforov<sup>[24]</sup> proposed the <i>A</i><sub><i>α</i></sub>-matrix: <i>A</i><sub><i>α</i></sub>(<i>G</i>) = <i>αD</i>(<i>G</i>) + (1 − <i>α</i>)<i>A</i>(<i>G</i>), where <i>α</i> ∈ [0, 1]. The largest eigenvalue of this novel matrix is called the <i>A</i><sub><i>α</i></sub>-index of <i>G</i>. In this paper, we characterize the graphs with minimum <i>A</i><sub><i>α</i></sub>-index among <i>n</i>-vertex graphs with independence number <i>i</i> for <i>α</i> ∈ [0, 1), where <span>\\\\(i = 1,\\\\,\\\\,\\\\left\\\\lfloor {{n \\\\over 2}} \\\\right\\\\rfloor,\\\\left\\\\lceil {{n \\\\over 2}} \\\\right\\\\rceil,\\\\,\\\\left\\\\lfloor {{n \\\\over 2}} \\\\right\\\\rfloor + 1,n - 3,n - 2,n - 1\\\\)</span>, whereas for <i>i</i> = 2 we consider the same problem for <span>\\\\(\\\\alpha \\\\in [0,{3 \\\\over 4}]\\\\)</span>. Furthermore, we determine the unique graph (resp. tree) on <i>n</i> vertices with given independence number having the maximum <i>A</i><sub><i>α</i></sub>-index with <i>α</i> ∈ [0, 1), whereas for the <i>n</i>-vertex bipartite graphs with given independence number, we characterize the unique graph having the maximum <i>A</i><sub><i>α</i></sub>-index with <span>\\\\(\\\\alpha \\\\in [{1 \\\\over 2},1)\\\\)</span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-023-1049-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1049-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定图G,G的邻接矩阵和度对角矩阵分别用a(G)和D(G)表示。2017年,Nikiforov[24]提出了Aα-矩阵:Aα(G)=αD(G)+(1−α)A(G),其中α∈[0,1]。这个新矩阵的最大特征值称为G的A,对于α∈[0,1),我们刻画了独立数为i的n顶点图中具有最小Aα索引的图,其中\(i=1,\,\,\left\lfloor{{n\over 2}}}\right\lfloor,\left \lceil{n\over2}}\right\ rceil,\,\lft\lflor{n\Over2}}\right\rfloor+1,n-3,n-2,n-1\),而对于i=2,我们考虑了\(\alpha\in[0,{3\over 4}]\)的相同问题。此外,我们确定了具有给定独立数的n个顶点上具有最大Aα-指数(α∈[0,1))的唯一图(resp.tree),而对于具有给定独立号的n顶点二部图,我们用\(\alpha\in[{1\over2},1)\刻画了具有最大A Aα-指数的唯一图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sharp Bounds on the Aα-index of Graphs in Terms of the Independence Number

Given a graph G, the adjacency matrix and degree diagonal matrix of G are denoted by A(G) and D(G), respectively. In 2017, Nikiforov[24] proposed the Aα-matrix: Aα(G) = αD(G) + (1 − α)A(G), where α ∈ [0, 1]. The largest eigenvalue of this novel matrix is called the Aα-index of G. In this paper, we characterize the graphs with minimum Aα-index among n-vertex graphs with independence number i for α ∈ [0, 1), where \(i = 1,\,\,\left\lfloor {{n \over 2}} \right\rfloor,\left\lceil {{n \over 2}} \right\rceil,\,\left\lfloor {{n \over 2}} \right\rfloor + 1,n - 3,n - 2,n - 1\), whereas for i = 2 we consider the same problem for \(\alpha \in [0,{3 \over 4}]\). Furthermore, we determine the unique graph (resp. tree) on n vertices with given independence number having the maximum Aα-index with α ∈ [0, 1), whereas for the n-vertex bipartite graphs with given independence number, we characterize the unique graph having the maximum Aα-index with \(\alpha \in [{1 \over 2},1)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信