{"title":"弱Lebesgue和Morrey空间上BMO和Lipschitz空间的交换子刻画","authors":"Ding-huai Wang, Jiang Zhou","doi":"10.1007/s10255-023-1077-0","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the weak Morrey space <i>WM</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span> is contained in the Morrey space <span>\\(M_{{q_1}}^p\\)</span> for 1 ≤ <i>q</i><sub>1</sub> < <i>q</i> ≤ <i>p</i> < ∞. As applications, we show that if the commutator [<i>b, T</i>] is bounded from <i>L</i><sup><i>p</i></sup> to <i>L</i><sup><i>p</i>,∞</sup> for some <i>p</i> ∈ (1, ∞), then <i>b</i> ∈ BMO, where <i>T</i> is a Calderón-Zygmund operator. Also, for 1 < <i>p</i> ≤ <i>q</i> < ∞, <i>b</i> ∈ BMO if and only if [6, <i>T</i>] is bounded from <i>M</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span> to <i>WM</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span>. For <i>b</i> belonging to Lipschitz class, we obtain similar results.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"39 3","pages":"583 - 590"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterizations of the BMO and Lipschitz Spaces via Commutators on Weak Lebesgue and Morrey Spaces\",\"authors\":\"Ding-huai Wang, Jiang Zhou\",\"doi\":\"10.1007/s10255-023-1077-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that the weak Morrey space <i>WM</i><span>\\n <sup><i>p</i></sup><sub><i>q</i></sub>\\n \\n </span> is contained in the Morrey space <span>\\\\(M_{{q_1}}^p\\\\)</span> for 1 ≤ <i>q</i><sub>1</sub> < <i>q</i> ≤ <i>p</i> < ∞. As applications, we show that if the commutator [<i>b, T</i>] is bounded from <i>L</i><sup><i>p</i></sup> to <i>L</i><sup><i>p</i>,∞</sup> for some <i>p</i> ∈ (1, ∞), then <i>b</i> ∈ BMO, where <i>T</i> is a Calderón-Zygmund operator. Also, for 1 < <i>p</i> ≤ <i>q</i> < ∞, <i>b</i> ∈ BMO if and only if [6, <i>T</i>] is bounded from <i>M</i><span>\\n <sup><i>p</i></sup><sub><i>q</i></sub>\\n \\n </span> to <i>WM</i><span>\\n <sup><i>p</i></sup><sub><i>q</i></sub>\\n \\n </span>. For <i>b</i> belonging to Lipschitz class, we obtain similar results.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"39 3\",\"pages\":\"583 - 590\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-023-1077-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1077-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Characterizations of the BMO and Lipschitz Spaces via Commutators on Weak Lebesgue and Morrey Spaces
We prove that the weak Morrey space WMpq is contained in the Morrey space \(M_{{q_1}}^p\) for 1 ≤ q1 < q ≤ p < ∞. As applications, we show that if the commutator [b, T] is bounded from Lp to Lp,∞ for some p ∈ (1, ∞), then b ∈ BMO, where T is a Calderón-Zygmund operator. Also, for 1 < p ≤ q < ∞, b ∈ BMO if and only if [6, T] is bounded from Mpq to WMpq. For b belonging to Lipschitz class, we obtain similar results.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.