{"title":"弱Lebesgue和Morrey空间上BMO和Lipschitz空间的交换子刻画","authors":"Ding-huai Wang, Jiang Zhou","doi":"10.1007/s10255-023-1077-0","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the weak Morrey space <i>WM</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span> is contained in the Morrey space <span>\\(M_{{q_1}}^p\\)</span> for 1 ≤ <i>q</i><sub>1</sub> < <i>q</i> ≤ <i>p</i> < ∞. As applications, we show that if the commutator [<i>b, T</i>] is bounded from <i>L</i><sup><i>p</i></sup> to <i>L</i><sup><i>p</i>,∞</sup> for some <i>p</i> ∈ (1, ∞), then <i>b</i> ∈ BMO, where <i>T</i> is a Calderón-Zygmund operator. Also, for 1 < <i>p</i> ≤ <i>q</i> < ∞, <i>b</i> ∈ BMO if and only if [6, <i>T</i>] is bounded from <i>M</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span> to <i>WM</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span>. For <i>b</i> belonging to Lipschitz class, we obtain similar results.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterizations of the BMO and Lipschitz Spaces via Commutators on Weak Lebesgue and Morrey Spaces\",\"authors\":\"Ding-huai Wang, Jiang Zhou\",\"doi\":\"10.1007/s10255-023-1077-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that the weak Morrey space <i>WM</i><span>\\n <sup><i>p</i></sup><sub><i>q</i></sub>\\n \\n </span> is contained in the Morrey space <span>\\\\(M_{{q_1}}^p\\\\)</span> for 1 ≤ <i>q</i><sub>1</sub> < <i>q</i> ≤ <i>p</i> < ∞. As applications, we show that if the commutator [<i>b, T</i>] is bounded from <i>L</i><sup><i>p</i></sup> to <i>L</i><sup><i>p</i>,∞</sup> for some <i>p</i> ∈ (1, ∞), then <i>b</i> ∈ BMO, where <i>T</i> is a Calderón-Zygmund operator. Also, for 1 < <i>p</i> ≤ <i>q</i> < ∞, <i>b</i> ∈ BMO if and only if [6, <i>T</i>] is bounded from <i>M</i><span>\\n <sup><i>p</i></sup><sub><i>q</i></sub>\\n \\n </span> to <i>WM</i><span>\\n <sup><i>p</i></sup><sub><i>q</i></sub>\\n \\n </span>. For <i>b</i> belonging to Lipschitz class, we obtain similar results.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-023-1077-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1077-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterizations of the BMO and Lipschitz Spaces via Commutators on Weak Lebesgue and Morrey Spaces
We prove that the weak Morrey space WMpq is contained in the Morrey space \(M_{{q_1}}^p\) for 1 ≤ q1 < q ≤ p < ∞. As applications, we show that if the commutator [b, T] is bounded from Lp to Lp,∞ for some p ∈ (1, ∞), then b ∈ BMO, where T is a Calderón-Zygmund operator. Also, for 1 < p ≤ q < ∞, b ∈ BMO if and only if [6, T] is bounded from Mpq to WMpq. For b belonging to Lipschitz class, we obtain similar results.