弱Lebesgue和Morrey空间上BMO和Lipschitz空间的交换子刻画

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Ding-huai Wang, Jiang Zhou
{"title":"弱Lebesgue和Morrey空间上BMO和Lipschitz空间的交换子刻画","authors":"Ding-huai Wang,&nbsp;Jiang Zhou","doi":"10.1007/s10255-023-1077-0","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the weak Morrey space <i>WM</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span> is contained in the Morrey space <span>\\(M_{{q_1}}^p\\)</span> for 1 ≤ <i>q</i><sub>1</sub> &lt; <i>q</i> ≤ <i>p</i> &lt; ∞. As applications, we show that if the commutator [<i>b, T</i>] is bounded from <i>L</i><sup><i>p</i></sup> to <i>L</i><sup><i>p</i>,∞</sup> for some <i>p</i> ∈ (1, ∞), then <i>b</i> ∈ BMO, where <i>T</i> is a Calderón-Zygmund operator. Also, for 1 &lt; <i>p</i> ≤ <i>q</i> &lt; ∞, <i>b</i> ∈ BMO if and only if [6, <i>T</i>] is bounded from <i>M</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span> to <i>WM</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span>. For <i>b</i> belonging to Lipschitz class, we obtain similar results.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"39 3","pages":"583 - 590"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterizations of the BMO and Lipschitz Spaces via Commutators on Weak Lebesgue and Morrey Spaces\",\"authors\":\"Ding-huai Wang,&nbsp;Jiang Zhou\",\"doi\":\"10.1007/s10255-023-1077-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that the weak Morrey space <i>WM</i><span>\\n <sup><i>p</i></sup><sub><i>q</i></sub>\\n \\n </span> is contained in the Morrey space <span>\\\\(M_{{q_1}}^p\\\\)</span> for 1 ≤ <i>q</i><sub>1</sub> &lt; <i>q</i> ≤ <i>p</i> &lt; ∞. As applications, we show that if the commutator [<i>b, T</i>] is bounded from <i>L</i><sup><i>p</i></sup> to <i>L</i><sup><i>p</i>,∞</sup> for some <i>p</i> ∈ (1, ∞), then <i>b</i> ∈ BMO, where <i>T</i> is a Calderón-Zygmund operator. Also, for 1 &lt; <i>p</i> ≤ <i>q</i> &lt; ∞, <i>b</i> ∈ BMO if and only if [6, <i>T</i>] is bounded from <i>M</i><span>\\n <sup><i>p</i></sup><sub><i>q</i></sub>\\n \\n </span> to <i>WM</i><span>\\n <sup><i>p</i></sup><sub><i>q</i></sub>\\n \\n </span>. For <i>b</i> belonging to Lipschitz class, we obtain similar results.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"39 3\",\"pages\":\"583 - 590\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-023-1077-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1077-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了弱Morrey空间WM-pq包含在Morrey空间\(M_{{q_1}}^p\)中,对于1≤q1<;q≤p<;∞。作为应用,我们证明了如果交换子[b,T]从Lp到Lp,∞有界,对于一些p∈(1,∞),则b∈BMO,其中T是Calderón-Zygmund算子。此外,对于1<;p≤q<;∞,b∈BMO当且仅当[6,T]从Mpq到WMpq有界。对于属于Lipschitz类的b,我们得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of the BMO and Lipschitz Spaces via Commutators on Weak Lebesgue and Morrey Spaces

We prove that the weak Morrey space WM pq is contained in the Morrey space \(M_{{q_1}}^p\) for 1 ≤ q1 < qp < ∞. As applications, we show that if the commutator [b, T] is bounded from Lp to Lp,∞ for some p ∈ (1, ∞), then b ∈ BMO, where T is a Calderón-Zygmund operator. Also, for 1 < pq < ∞, b ∈ BMO if and only if [6, T] is bounded from M pq to WM pq . For b belonging to Lipschitz class, we obtain similar results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信