具有各向异性粘性的二维随机Navier-Stokes方程的大偏差原理

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Bing-guang Chen, Xiang-chan Zhu
{"title":"具有各向异性粘性的二维随机Navier-Stokes方程的大偏差原理","authors":"Bing-guang Chen,&nbsp;Xiang-chan Zhu","doi":"10.1007/s10255-023-1071-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we establish the large deviation principle for the the two-dimensional stochastic Navier-Stokes equations with anisotropic viscosity both for small noise and for short time. The proof for large deviation principle is based on the weak convergence approach. For small time asymptotics we use the exponential equivalence to prove the result.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"39 3","pages":"511 - 549"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Large Deviation Principle for the Two-dimensional Stochastic Navier-Stokes Equations with Anisotropic Viscosity\",\"authors\":\"Bing-guang Chen,&nbsp;Xiang-chan Zhu\",\"doi\":\"10.1007/s10255-023-1071-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we establish the large deviation principle for the the two-dimensional stochastic Navier-Stokes equations with anisotropic viscosity both for small noise and for short time. The proof for large deviation principle is based on the weak convergence approach. For small time asymptotics we use the exponential equivalence to prove the result.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"39 3\",\"pages\":\"511 - 549\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-023-1071-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1071-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文建立了粘性各向异性的二维随机Navier-Stokes方程在小噪声和短时间内的大偏差原理。大偏差原理的证明是基于弱收敛方法。对于小时间渐近性,我们使用指数等价来证明结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Deviation Principle for the Two-dimensional Stochastic Navier-Stokes Equations with Anisotropic Viscosity

In this paper we establish the large deviation principle for the the two-dimensional stochastic Navier-Stokes equations with anisotropic viscosity both for small noise and for short time. The proof for large deviation principle is based on the weak convergence approach. For small time asymptotics we use the exponential equivalence to prove the result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信