无角截断的相对论Boltzmann方程的渐近稳定性

IF 2.6 1区 数学 Q1 MATHEMATICS
Jin Woo Jang, Robert M. Strain
{"title":"无角截断的相对论Boltzmann方程的渐近稳定性","authors":"Jin Woo Jang,&nbsp;Robert M. Strain","doi":"10.1007/s40818-022-00137-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the relativistic Boltzmann equation without angular cutoff. We establish the global-in-time existence, uniqueness and asymptotic stability for solutions nearby the relativistic Maxwellian. We work in the case of a spatially periodic box. We assume the generic hard-interaction and soft-interaction conditions on the collision kernel that were derived by Dudyński and Ekiel-Je<span>\\(\\dot{\\text {z}}\\)</span>ewska (Comm. Math. Phys. <b>115</b>(4):607–629, 1985) in [32], and our assumptions include the case of Israel particles (J. Math. Phys. <b>4</b>:1163–1181, 1963) in [56]. In this physical situation, the angular function in the collision kernel is not locally integrable, and the collision operator behaves like a fractional diffusion operator. The coercivity estimates that are needed rely crucially on the sharp asymptotics for the frequency multiplier that has not been previously established. We further derive the relativistic analogue of the Carleman dual representation for the Boltzmann collision operator. This resolves the open question of perturbative global existence and uniqueness without the Grad’s angular cut-off assumption.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-022-00137-2.pdf","citationCount":"4","resultStr":"{\"title\":\"Asymptotic Stability of the Relativistic Boltzmann Equation Without Angular Cut-Off\",\"authors\":\"Jin Woo Jang,&nbsp;Robert M. Strain\",\"doi\":\"10.1007/s40818-022-00137-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is concerned with the relativistic Boltzmann equation without angular cutoff. We establish the global-in-time existence, uniqueness and asymptotic stability for solutions nearby the relativistic Maxwellian. We work in the case of a spatially periodic box. We assume the generic hard-interaction and soft-interaction conditions on the collision kernel that were derived by Dudyński and Ekiel-Je<span>\\\\(\\\\dot{\\\\text {z}}\\\\)</span>ewska (Comm. Math. Phys. <b>115</b>(4):607–629, 1985) in [32], and our assumptions include the case of Israel particles (J. Math. Phys. <b>4</b>:1163–1181, 1963) in [56]. In this physical situation, the angular function in the collision kernel is not locally integrable, and the collision operator behaves like a fractional diffusion operator. The coercivity estimates that are needed rely crucially on the sharp asymptotics for the frequency multiplier that has not been previously established. We further derive the relativistic analogue of the Carleman dual representation for the Boltzmann collision operator. This resolves the open question of perturbative global existence and uniqueness without the Grad’s angular cut-off assumption.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40818-022-00137-2.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-022-00137-2\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-022-00137-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文讨论了无角截断的相对论玻尔兹曼方程。我们建立了相对论Maxwellian附近解的全局时间存在性、唯一性和渐近稳定性。我们在空间周期箱的情况下工作。我们假设Dudyński和Ekiel Je(\dot{\text{z}})ewska(Comm.Math.Phys.115(4):607–6291985)在[32]中导出的碰撞核上的一般硬相互作用和软相互作用条件,并且我们的假设包括[56]中以色列粒子的情况(J.Math.Phys.4:1163–11811963)。在这种物理情况下,碰撞核中的角函数不是局部可积的,并且碰撞算子的行为类似于分数扩散算子。所需的矫顽力估计主要依赖于先前未建立的倍频器的尖锐渐近线。我们进一步推导了玻尔兹曼碰撞算子的Carleman对偶表示的相对论模拟。这解决了在没有Grad角截止假设的情况下扰动全局存在性和唯一性的公开问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Stability of the Relativistic Boltzmann Equation Without Angular Cut-Off

This paper is concerned with the relativistic Boltzmann equation without angular cutoff. We establish the global-in-time existence, uniqueness and asymptotic stability for solutions nearby the relativistic Maxwellian. We work in the case of a spatially periodic box. We assume the generic hard-interaction and soft-interaction conditions on the collision kernel that were derived by Dudyński and Ekiel-Je\(\dot{\text {z}}\)ewska (Comm. Math. Phys. 115(4):607–629, 1985) in [32], and our assumptions include the case of Israel particles (J. Math. Phys. 4:1163–1181, 1963) in [56]. In this physical situation, the angular function in the collision kernel is not locally integrable, and the collision operator behaves like a fractional diffusion operator. The coercivity estimates that are needed rely crucially on the sharp asymptotics for the frequency multiplier that has not been previously established. We further derive the relativistic analogue of the Carleman dual representation for the Boltzmann collision operator. This resolves the open question of perturbative global existence and uniqueness without the Grad’s angular cut-off assumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信