J. Ederson M. Braga, Diego R. Moreira, J. Wálisson V. de Sousa
{"title":"奇异/退化非线性方程Carleson估计的非齐次形式","authors":"J. Ederson M. Braga, Diego R. Moreira, J. Wálisson V. de Sousa","doi":"10.1007/s10231-023-01320-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we provide an inhomogeneous version of the Carleson estimate for quasilinear elliptic equations with g-Laplace type growth and unbounded right-hand side. We use this result to extend exponential growth theorems in cylindrical unbounded domains proven by Berestycki et al. (Duke Math J 81:467–494, 1996). We finish this paper showing a boundary Harnack-type inequality.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-023-01320-3.pdf","citationCount":"0","resultStr":"{\"title\":\"An inhomogeneous version of the Carleson estimate for singular/degenerate nonlinear equations\",\"authors\":\"J. Ederson M. Braga, Diego R. Moreira, J. Wálisson V. de Sousa\",\"doi\":\"10.1007/s10231-023-01320-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we provide an inhomogeneous version of the Carleson estimate for quasilinear elliptic equations with g-Laplace type growth and unbounded right-hand side. We use this result to extend exponential growth theorems in cylindrical unbounded domains proven by Berestycki et al. (Duke Math J 81:467–494, 1996). We finish this paper showing a boundary Harnack-type inequality.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-023-01320-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01320-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01320-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们提供了具有g-Laplace型增长和无界右手边的拟线性椭圆型方程的Carleson估计的非齐次版本。我们使用这个结果来扩展Berestycki等人(Duke Math J 81:467–4941996)证明的圆柱形无界域中的指数增长定理。本文最后给出了一个边界Harnack型不等式。
An inhomogeneous version of the Carleson estimate for singular/degenerate nonlinear equations
In this paper, we provide an inhomogeneous version of the Carleson estimate for quasilinear elliptic equations with g-Laplace type growth and unbounded right-hand side. We use this result to extend exponential growth theorems in cylindrical unbounded domains proven by Berestycki et al. (Duke Math J 81:467–494, 1996). We finish this paper showing a boundary Harnack-type inequality.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.