对称复合材料层合板横向裂纹间距不均匀

IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Z. Karoui, J. Berthe, C. Maurini
{"title":"对称复合材料层合板横向裂纹间距不均匀","authors":"Z. Karoui,&nbsp;J. Berthe,&nbsp;C. Maurini","doi":"10.1007/s10704-023-00715-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study multiple transverse cracking of symmetric laminates in the framework of the variational approach to fracture. Considering the Griffith model, we assume that several cracks can appear instantaneously through the whole thickness of the core layer, separating the bar in <i>n</i> elastic segments. We show that the energy minimization implies the bifurcation from solutions with uniform crack spacing to non uniformly spaced solutions, a phenomenon ignored in the literature for perfect systems. The stability of uniformly spaced solutions crucially depends on the concavity of the elastic compliance of each elastic segment as a function of the segment length. We compute this function and its derivatives numerically with domain-derivative techniques for a large set of geometric and material parameters. Our results indicate that the change of concavity and the related instability is a robust qualitative property that becomes quantitatively relevant in the case of laminates with thin and soft outer layers.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"242 2","pages":"191 - 206"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-uniform spacing of transverse cracks in symmetric composite laminates\",\"authors\":\"Z. Karoui,&nbsp;J. Berthe,&nbsp;C. Maurini\",\"doi\":\"10.1007/s10704-023-00715-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study multiple transverse cracking of symmetric laminates in the framework of the variational approach to fracture. Considering the Griffith model, we assume that several cracks can appear instantaneously through the whole thickness of the core layer, separating the bar in <i>n</i> elastic segments. We show that the energy minimization implies the bifurcation from solutions with uniform crack spacing to non uniformly spaced solutions, a phenomenon ignored in the literature for perfect systems. The stability of uniformly spaced solutions crucially depends on the concavity of the elastic compliance of each elastic segment as a function of the segment length. We compute this function and its derivatives numerically with domain-derivative techniques for a large set of geometric and material parameters. Our results indicate that the change of concavity and the related instability is a robust qualitative property that becomes quantitatively relevant in the case of laminates with thin and soft outer layers.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"242 2\",\"pages\":\"191 - 206\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-023-00715-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00715-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文在变分断裂方法的框架下研究了对称层合板的多重横向裂纹。考虑Griffith模型,我们假设几个裂缝可以瞬间穿过整个核心层的厚度,将杆分离成n个弹性段。我们证明了能量最小化意味着从具有均匀裂纹间距的解到非均匀裂纹间距的解的分叉,这一现象在文献中被完美系统所忽略。均匀间隔解的稳定性关键取决于每个弹性段的弹性柔度的凹凸度作为段长度的函数。我们用域导数技术对大量几何参数和材料参数进行了数值计算。我们的研究结果表明,凹凸度的变化和相关的不稳定性是一种强大的定性性质,在具有薄而软外层的层压板的情况下成为定量相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Non-uniform spacing of transverse cracks in symmetric composite laminates

Non-uniform spacing of transverse cracks in symmetric composite laminates

We study multiple transverse cracking of symmetric laminates in the framework of the variational approach to fracture. Considering the Griffith model, we assume that several cracks can appear instantaneously through the whole thickness of the core layer, separating the bar in n elastic segments. We show that the energy minimization implies the bifurcation from solutions with uniform crack spacing to non uniformly spaced solutions, a phenomenon ignored in the literature for perfect systems. The stability of uniformly spaced solutions crucially depends on the concavity of the elastic compliance of each elastic segment as a function of the segment length. We compute this function and its derivatives numerically with domain-derivative techniques for a large set of geometric and material parameters. Our results indicate that the change of concavity and the related instability is a robust qualitative property that becomes quantitatively relevant in the case of laminates with thin and soft outer layers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信