Schwarzschild背景下自旋场的Price定律

IF 2.6 1区 数学 Q1 MATHEMATICS
Siyuan Ma, Lin Zhang
{"title":"Schwarzschild背景下自旋场的Price定律","authors":"Siyuan Ma,&nbsp;Lin Zhang","doi":"10.1007/s40818-022-00139-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we derive the globally precise late-time asymptotics for the spin-<span>\\({\\mathfrak {s}}\\)</span> fields on a Schwarzschild background, including the scalar field <span>\\(({\\mathfrak {s}}=0)\\)</span>, the Maxwell field <span>\\(({\\mathfrak {s}}=\\pm 1)\\)</span> and the linearized gravity <span>\\(({\\mathfrak {s}}=\\pm 2)\\)</span>. The conjectured Price’s law in the physics literature which predicts the sharp rates of decay of the spin <span>\\(s=\\pm {\\mathfrak {s}}\\)</span> components towards the future null infinity as well as in a compact region is shown. Further, we confirm the heuristic claim by Barack and Ori that the spin <span>\\(+1, +2\\)</span> components have an extra power of decay at the event horizon than the conjectured Price’s law. The asymptotics are derived via a unified, detailed analysis of the Teukolsky master equation that is satisfied by all these components.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-022-00139-0.pdf","citationCount":"7","resultStr":"{\"title\":\"Price’s Law for Spin Fields on a Schwarzschild Background\",\"authors\":\"Siyuan Ma,&nbsp;Lin Zhang\",\"doi\":\"10.1007/s40818-022-00139-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we derive the globally precise late-time asymptotics for the spin-<span>\\\\({\\\\mathfrak {s}}\\\\)</span> fields on a Schwarzschild background, including the scalar field <span>\\\\(({\\\\mathfrak {s}}=0)\\\\)</span>, the Maxwell field <span>\\\\(({\\\\mathfrak {s}}=\\\\pm 1)\\\\)</span> and the linearized gravity <span>\\\\(({\\\\mathfrak {s}}=\\\\pm 2)\\\\)</span>. The conjectured Price’s law in the physics literature which predicts the sharp rates of decay of the spin <span>\\\\(s=\\\\pm {\\\\mathfrak {s}}\\\\)</span> components towards the future null infinity as well as in a compact region is shown. Further, we confirm the heuristic claim by Barack and Ori that the spin <span>\\\\(+1, +2\\\\)</span> components have an extra power of decay at the event horizon than the conjectured Price’s law. The asymptotics are derived via a unified, detailed analysis of the Teukolsky master equation that is satisfied by all these components.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40818-022-00139-0.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-022-00139-0\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-022-00139-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

在这项工作中,我们导出了Schwarzschild背景上自旋-({\mathfrak{s}})场的全局精确的后期渐近性,包括标量场({\ mathfrak{s{}=0)、麦克斯韦场(({\mathfrac{s}}}=\pm1)和线性化重力({\smathfrak{s}}=\ pm 2)。给出了物理学文献中推测的普莱斯定律,该定律预测了自旋\(s=\pm{\mathfrak{s}})分量在未来零无穷大以及紧凑区域中的急剧衰变率。此外,我们证实了Barack和Ori的启发式主张,即自旋\(+1,+2\)分量在事件视界处比推测的Price定律具有额外的衰变能力。渐近性是通过对所有这些分量都满足的Teukolsky主方程的统一、详细分析得出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Price’s Law for Spin Fields on a Schwarzschild Background

Price’s Law for Spin Fields on a Schwarzschild Background

In this work, we derive the globally precise late-time asymptotics for the spin-\({\mathfrak {s}}\) fields on a Schwarzschild background, including the scalar field \(({\mathfrak {s}}=0)\), the Maxwell field \(({\mathfrak {s}}=\pm 1)\) and the linearized gravity \(({\mathfrak {s}}=\pm 2)\). The conjectured Price’s law in the physics literature which predicts the sharp rates of decay of the spin \(s=\pm {\mathfrak {s}}\) components towards the future null infinity as well as in a compact region is shown. Further, we confirm the heuristic claim by Barack and Ori that the spin \(+1, +2\) components have an extra power of decay at the event horizon than the conjectured Price’s law. The asymptotics are derived via a unified, detailed analysis of the Teukolsky master equation that is satisfied by all these components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信