{"title":"三维Euler方程Hou-Lo模型的渐近自相似爆破","authors":"Jiajie Chen, Thomas Y. Hou, De Huang","doi":"10.1007/s40818-022-00140-7","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired by the numerical evidence of a potential 3D Euler singularity [54, 55], we prove finite time singularity from smooth initial data for the HL model introduced by Hou-Luo in [54, 55] for the 3D Euler equations with boundary. Our finite time blowup solution for the HL model and the singular solution considered in [54, 55] share some essential features, including similar blowup exponents, symmetry properties of the solution, and the sign of the solution. We use a dynamical rescaling formulation and the strategy proposed in our recent work in [11] to establish the nonlinear stability of an approximate self-similar profile. The nonlinear stability enables us to prove that the solution of the HL model with smooth initial data and finite energy will develop a focusing asymptotically self-similar singularity in finite time. Moreover the self-similar profile is unique within a small energy ball and the <span>\\(C^\\gamma \\)</span> norm of the density <span>\\(\\theta \\)</span> with <span>\\(\\gamma \\approx 1/3\\)</span> is uniformly bounded up to the singularity time.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Asymptotically self-similar blowup of the Hou-Luo model for the 3D Euler equations\",\"authors\":\"Jiajie Chen, Thomas Y. Hou, De Huang\",\"doi\":\"10.1007/s40818-022-00140-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inspired by the numerical evidence of a potential 3D Euler singularity [54, 55], we prove finite time singularity from smooth initial data for the HL model introduced by Hou-Luo in [54, 55] for the 3D Euler equations with boundary. Our finite time blowup solution for the HL model and the singular solution considered in [54, 55] share some essential features, including similar blowup exponents, symmetry properties of the solution, and the sign of the solution. We use a dynamical rescaling formulation and the strategy proposed in our recent work in [11] to establish the nonlinear stability of an approximate self-similar profile. The nonlinear stability enables us to prove that the solution of the HL model with smooth initial data and finite energy will develop a focusing asymptotically self-similar singularity in finite time. Moreover the self-similar profile is unique within a small energy ball and the <span>\\\\(C^\\\\gamma \\\\)</span> norm of the density <span>\\\\(\\\\theta \\\\)</span> with <span>\\\\(\\\\gamma \\\\approx 1/3\\\\)</span> is uniformly bounded up to the singularity time.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-022-00140-7\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-022-00140-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotically self-similar blowup of the Hou-Luo model for the 3D Euler equations
Inspired by the numerical evidence of a potential 3D Euler singularity [54, 55], we prove finite time singularity from smooth initial data for the HL model introduced by Hou-Luo in [54, 55] for the 3D Euler equations with boundary. Our finite time blowup solution for the HL model and the singular solution considered in [54, 55] share some essential features, including similar blowup exponents, symmetry properties of the solution, and the sign of the solution. We use a dynamical rescaling formulation and the strategy proposed in our recent work in [11] to establish the nonlinear stability of an approximate self-similar profile. The nonlinear stability enables us to prove that the solution of the HL model with smooth initial data and finite energy will develop a focusing asymptotically self-similar singularity in finite time. Moreover the self-similar profile is unique within a small energy ball and the \(C^\gamma \) norm of the density \(\theta \) with \(\gamma \approx 1/3\) is uniformly bounded up to the singularity time.