{"title":"带边界的Yamabe孤子","authors":"Pak Tung Ho, Jinwoo Shin","doi":"10.1007/s10231-023-01318-x","DOIUrl":null,"url":null,"abstract":"<div><p>Yamabe soliton is a self-similar solution to the Yamabe flow on manifolds without boundary. In this paper, we define and study the Yamabe soliton with boundary and conformal mean curvature soliton, which are natural generalizations of the Yamabe soliton. We study these solitons from equation point of view. We also study their two-dimensional analog: the Gauss curvature soliton with boundary and geodesic curvature soliton.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-023-01318-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Yamabe solitons with boundary\",\"authors\":\"Pak Tung Ho, Jinwoo Shin\",\"doi\":\"10.1007/s10231-023-01318-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Yamabe soliton is a self-similar solution to the Yamabe flow on manifolds without boundary. In this paper, we define and study the Yamabe soliton with boundary and conformal mean curvature soliton, which are natural generalizations of the Yamabe soliton. We study these solitons from equation point of view. We also study their two-dimensional analog: the Gauss curvature soliton with boundary and geodesic curvature soliton.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-023-01318-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01318-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01318-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Yamabe soliton is a self-similar solution to the Yamabe flow on manifolds without boundary. In this paper, we define and study the Yamabe soliton with boundary and conformal mean curvature soliton, which are natural generalizations of the Yamabe soliton. We study these solitons from equation point of view. We also study their two-dimensional analog: the Gauss curvature soliton with boundary and geodesic curvature soliton.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.