{"title":"卡诺的横截面理论及其应用——法国合成几何的觉醒","authors":"Andrea Del Centina","doi":"10.1007/s00407-021-00276-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we discuss in some depth the main theorems pertaining to Carnot’s theory of transversals, their initial reception by Servois, and the applications that Brianchon made of them to the theory of conic sections. The contributions of these authors brought the long-forgotten theorems of Desargues and Pascal fully to light, renewed the interest in synthetic geometry in France, and prepared the ground from which projective geometry later developed.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"76 1","pages":"45 - 128"},"PeriodicalIF":0.7000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00407-021-00276-1","citationCount":"4","resultStr":"{\"title\":\"Carnot’s theory of transversals and its applications by Servois and Brianchon: the awakening of synthetic geometry in France\",\"authors\":\"Andrea Del Centina\",\"doi\":\"10.1007/s00407-021-00276-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we discuss in some depth the main theorems pertaining to Carnot’s theory of transversals, their initial reception by Servois, and the applications that Brianchon made of them to the theory of conic sections. The contributions of these authors brought the long-forgotten theorems of Desargues and Pascal fully to light, renewed the interest in synthetic geometry in France, and prepared the ground from which projective geometry later developed.</p></div>\",\"PeriodicalId\":50982,\"journal\":{\"name\":\"Archive for History of Exact Sciences\",\"volume\":\"76 1\",\"pages\":\"45 - 128\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00407-021-00276-1\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for History of Exact Sciences\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00407-021-00276-1\",\"RegionNum\":2,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for History of Exact Sciences","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00407-021-00276-1","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
Carnot’s theory of transversals and its applications by Servois and Brianchon: the awakening of synthetic geometry in France
In this paper we discuss in some depth the main theorems pertaining to Carnot’s theory of transversals, their initial reception by Servois, and the applications that Brianchon made of them to the theory of conic sections. The contributions of these authors brought the long-forgotten theorems of Desargues and Pascal fully to light, renewed the interest in synthetic geometry in France, and prepared the ground from which projective geometry later developed.
期刊介绍:
The Archive for History of Exact Sciences casts light upon the conceptual groundwork of the sciences by analyzing the historical course of rigorous quantitative thought and the precise theory of nature in the fields of mathematics, physics, technical chemistry, computer science, astronomy, and the biological sciences, embracing as well their connections to experiment. This journal nourishes historical research meeting the standards of the mathematical sciences. Its aim is to give rapid and full publication to writings of exceptional depth, scope, and permanence.