具有多局部初始数据的非线性波动方程的全局稳定性

IF 2.6 1区 数学 Q1 MATHEMATICS
John Anderson, Federico Pasqualotto
{"title":"具有多局部初始数据的非线性波动方程的全局稳定性","authors":"John Anderson,&nbsp;Federico Pasqualotto","doi":"10.1007/s40818-022-00136-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we initiate the study of the global stability of nonlinear wave equations with initial data that are not required to be localized around a single point. More precisely, we allow small initial data localized around any finite collection of points which can be arbitrarily far from one another. Existing techniques do not directly apply to this setting because they require norms with radial weights away from some center to be small. The smallness we require on the data is measured in a norm which does not depend on the scale of the configuration of the data. Our method of proof relies on a close analysis of the geometry of the interaction between waves originating from different sources. We prove estimates on the bilinear forms encoding the interaction, which allow us to show improved bounds for the energy of the solution. We finally apply a variant of the vector field method involving modified Klainerman–Sobolev estimates to prove global stability. As a corollary of our proof, we are able to show global existence for a class of data whose <span>\\(H^1\\)</span> norm is arbitrarily large.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global Stability for Nonlinear Wave Equations with Multi-Localized Initial Data\",\"authors\":\"John Anderson,&nbsp;Federico Pasqualotto\",\"doi\":\"10.1007/s40818-022-00136-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we initiate the study of the global stability of nonlinear wave equations with initial data that are not required to be localized around a single point. More precisely, we allow small initial data localized around any finite collection of points which can be arbitrarily far from one another. Existing techniques do not directly apply to this setting because they require norms with radial weights away from some center to be small. The smallness we require on the data is measured in a norm which does not depend on the scale of the configuration of the data. Our method of proof relies on a close analysis of the geometry of the interaction between waves originating from different sources. We prove estimates on the bilinear forms encoding the interaction, which allow us to show improved bounds for the energy of the solution. We finally apply a variant of the vector field method involving modified Klainerman–Sobolev estimates to prove global stability. As a corollary of our proof, we are able to show global existence for a class of data whose <span>\\\\(H^1\\\\)</span> norm is arbitrarily large.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-022-00136-3\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-022-00136-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们开始研究非线性波动方程的全局稳定性,其初始数据不需要局限于单点。更准确地说,我们允许小的初始数据定位在任何有限的点集合周围,这些点可以任意远离彼此。现有技术不直接应用于此设置,因为它们要求径向权重远离某个中心的范数较小。我们对数据的要求很小,是在一个不依赖于数据配置规模的范数中测量的。我们的证明方法依赖于对源自不同来源的波之间相互作用的几何结构的仔细分析。我们证明了对编码相互作用的双线性形式的估计,这使我们能够显示解的能量的改进边界。最后,我们应用向量场方法的一个变体,包括修正的Klainerman–Sobolev估计,以证明全局稳定性。作为我们证明的一个推论,我们能够证明一类数据的全局存在性,该类数据的\(H^1\)范数是任意大的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global Stability for Nonlinear Wave Equations with Multi-Localized Initial Data

Global Stability for Nonlinear Wave Equations with Multi-Localized Initial Data

In this paper, we initiate the study of the global stability of nonlinear wave equations with initial data that are not required to be localized around a single point. More precisely, we allow small initial data localized around any finite collection of points which can be arbitrarily far from one another. Existing techniques do not directly apply to this setting because they require norms with radial weights away from some center to be small. The smallness we require on the data is measured in a norm which does not depend on the scale of the configuration of the data. Our method of proof relies on a close analysis of the geometry of the interaction between waves originating from different sources. We prove estimates on the bilinear forms encoding the interaction, which allow us to show improved bounds for the energy of the solution. We finally apply a variant of the vector field method involving modified Klainerman–Sobolev estimates to prove global stability. As a corollary of our proof, we are able to show global existence for a class of data whose \(H^1\) norm is arbitrarily large.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信