一般(1+1)-标量场模型中Kinks渐近稳定的一个充分条件

IF 2.4 1区 数学 Q1 MATHEMATICS
Michał Kowalczyk, Yvan Martel, Claudio Muñoz, Hanne Van Den Bosch
{"title":"一般(1+1)-标量场模型中Kinks渐近稳定的一个充分条件","authors":"Michał Kowalczyk,&nbsp;Yvan Martel,&nbsp;Claudio Muñoz,&nbsp;Hanne Van Den Bosch","doi":"10.1007/s40818-021-00098-y","DOIUrl":null,"url":null,"abstract":"<div><p>We study stability properties of kinks for the (1+1)-dimensional nonlinear scalar field theory models </p><div><div><span>$$\\begin{aligned} \\partial _t^2\\phi -\\partial _x^2\\phi + W'(\\phi ) = 0, \\quad (t,x)\\in \\mathbb {R}\\times \\mathbb {R}. \\end{aligned}$$</span></div></div><p>The orbital stability of kinks under general assumptions on the potential <i>W</i> is a consequence of energy arguments. Our main result is the derivation of a simple and explicit sufficient condition on the potential <i>W</i> for the asymptotic stability of a given kink. This condition applies to any static or moving kink, in particular no symmetry assumption is required. Last, motivated by the Physics literature, we present applications of the criterion to the <span>\\(P(\\phi )_2\\)</span> theories and the double sine-Gordon theory.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40818-021-00098-y","citationCount":"6","resultStr":"{\"title\":\"A Sufficient Condition for Asymptotic Stability of Kinks in General (1+1)-Scalar Field Models\",\"authors\":\"Michał Kowalczyk,&nbsp;Yvan Martel,&nbsp;Claudio Muñoz,&nbsp;Hanne Van Den Bosch\",\"doi\":\"10.1007/s40818-021-00098-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study stability properties of kinks for the (1+1)-dimensional nonlinear scalar field theory models </p><div><div><span>$$\\\\begin{aligned} \\\\partial _t^2\\\\phi -\\\\partial _x^2\\\\phi + W'(\\\\phi ) = 0, \\\\quad (t,x)\\\\in \\\\mathbb {R}\\\\times \\\\mathbb {R}. \\\\end{aligned}$$</span></div></div><p>The orbital stability of kinks under general assumptions on the potential <i>W</i> is a consequence of energy arguments. Our main result is the derivation of a simple and explicit sufficient condition on the potential <i>W</i> for the asymptotic stability of a given kink. This condition applies to any static or moving kink, in particular no symmetry assumption is required. Last, motivated by the Physics literature, we present applications of the criterion to the <span>\\\\(P(\\\\phi )_2\\\\)</span> theories and the double sine-Gordon theory.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40818-021-00098-y\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-021-00098-y\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00098-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们研究了(1+1)维非线性标量场论模型$$\beagin{aligned}\partial _t^2\phi-\partial _x^2\phi+W'(\phi)=0,\quad(t,x)\in\mathbb{R}\times\mathb{R}扭结的稳定性。\end{aligned}$$在对势W的一般假设下,扭结的轨道稳定性是能量争论的结果。我们的主要结果是导出了一个关于势W的一个简单而显式的充分条件,使给定扭结渐近稳定。此条件适用于任何静态或移动扭结,特别是不需要对称假设。最后,在物理文献的推动下,我们提出了该判据在\(P(φ)_2)理论和二重正弦Gordon理论中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sufficient Condition for Asymptotic Stability of Kinks in General (1+1)-Scalar Field Models

We study stability properties of kinks for the (1+1)-dimensional nonlinear scalar field theory models

$$\begin{aligned} \partial _t^2\phi -\partial _x^2\phi + W'(\phi ) = 0, \quad (t,x)\in \mathbb {R}\times \mathbb {R}. \end{aligned}$$

The orbital stability of kinks under general assumptions on the potential W is a consequence of energy arguments. Our main result is the derivation of a simple and explicit sufficient condition on the potential W for the asymptotic stability of a given kink. This condition applies to any static or moving kink, in particular no symmetry assumption is required. Last, motivated by the Physics literature, we present applications of the criterion to the \(P(\phi )_2\) theories and the double sine-Gordon theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信