矩映射、非线性PDE和镜像对称中的稳定性,I:大地测量学

IF 2.4 1区 数学 Q1 MATHEMATICS
Tristan C. Collins, Shing-Tung Yau
{"title":"矩映射、非线性PDE和镜像对称中的稳定性,I:大地测量学","authors":"Tristan C. Collins,&nbsp;Shing-Tung Yau","doi":"10.1007/s40818-021-00100-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the first in a series, we study the deformed Hermitian–Yang–Mills (dHYM) equation from the variational point of view as an infinite dimensional GIT problem. The dHYM equation is mirror to the special Lagrangian equation, and our infinite dimensional GIT problem is mirror to Thomas’ GIT picture for special Lagrangians. This gives rise to infinite dimensional manifold <span>\\({\\mathcal {H}}\\)</span> closely related to Solomon’s space of positive Lagrangians. In the hypercritical phase case we prove the existence of smooth approximate geodesics, and weak geodesics with <span>\\(C^{1,\\alpha }\\)</span> regularity. This is accomplished by proving sharp with respect to scale estimates for the Lagrangian phase operator on collapsing manifolds with boundary. As an application of our techniques we give a simplified proof of Chen’s theorem on the existence of <span>\\(C^{1,\\alpha }\\)</span> geodesics in the space of Kähler metrics. In two follow up papers, these results will be used to examine algebraic obstructions to the existence of solutions to dHYM [26] and special Lagrangians in Landau–Ginzburg models [27].</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40818-021-00100-7","citationCount":"50","resultStr":"{\"title\":\"Moment Maps, Nonlinear PDE and Stability in Mirror Symmetry, I: Geodesics\",\"authors\":\"Tristan C. Collins,&nbsp;Shing-Tung Yau\",\"doi\":\"10.1007/s40818-021-00100-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the first in a series, we study the deformed Hermitian–Yang–Mills (dHYM) equation from the variational point of view as an infinite dimensional GIT problem. The dHYM equation is mirror to the special Lagrangian equation, and our infinite dimensional GIT problem is mirror to Thomas’ GIT picture for special Lagrangians. This gives rise to infinite dimensional manifold <span>\\\\({\\\\mathcal {H}}\\\\)</span> closely related to Solomon’s space of positive Lagrangians. In the hypercritical phase case we prove the existence of smooth approximate geodesics, and weak geodesics with <span>\\\\(C^{1,\\\\alpha }\\\\)</span> regularity. This is accomplished by proving sharp with respect to scale estimates for the Lagrangian phase operator on collapsing manifolds with boundary. As an application of our techniques we give a simplified proof of Chen’s theorem on the existence of <span>\\\\(C^{1,\\\\alpha }\\\\)</span> geodesics in the space of Kähler metrics. In two follow up papers, these results will be used to examine algebraic obstructions to the existence of solutions to dHYM [26] and special Lagrangians in Landau–Ginzburg models [27].</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40818-021-00100-7\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-021-00100-7\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00100-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 50

摘要

本文是系列文章中的第一篇,我们从变分的角度将变形的Hermitian–Yang–Mills(dHYM)方程作为一个无限维GIT问题进行了研究。dHYM方程是特殊拉格朗日方程的镜像,我们的无限维GIT问题是特殊拉格朗日的Thomas的GIT图的镜像。这产生了与正拉格朗日的所罗门空间密切相关的无穷维流形。在超临界相位情况下,我们证明了光滑近似测地线和具有\(C^{1,\alpha}\)正则性的弱测地线的存在性。这是通过证明拉格朗日相位算子在具有边界的坍缩流形上的尺度估计是尖锐的来实现的。作为我们技术的一个应用,我们给出了关于Kähler度量空间中\(C^{1,\alpha}\)测地线存在性的Chen定理的一个简化证明。在接下来的两篇论文中,这些结果将用于检验dHYM[26]和Landau–Ginzburg模型[27]中特殊拉格朗日方程解存在的代数障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment Maps, Nonlinear PDE and Stability in Mirror Symmetry, I: Geodesics

In this paper, the first in a series, we study the deformed Hermitian–Yang–Mills (dHYM) equation from the variational point of view as an infinite dimensional GIT problem. The dHYM equation is mirror to the special Lagrangian equation, and our infinite dimensional GIT problem is mirror to Thomas’ GIT picture for special Lagrangians. This gives rise to infinite dimensional manifold \({\mathcal {H}}\) closely related to Solomon’s space of positive Lagrangians. In the hypercritical phase case we prove the existence of smooth approximate geodesics, and weak geodesics with \(C^{1,\alpha }\) regularity. This is accomplished by proving sharp with respect to scale estimates for the Lagrangian phase operator on collapsing manifolds with boundary. As an application of our techniques we give a simplified proof of Chen’s theorem on the existence of \(C^{1,\alpha }\) geodesics in the space of Kähler metrics. In two follow up papers, these results will be used to examine algebraic obstructions to the existence of solutions to dHYM [26] and special Lagrangians in Landau–Ginzburg models [27].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信