径向情况下能量临界非线性波动方程的孤立子解

IF 2.4 1区 数学 Q1 MATHEMATICS
Jacek Jendrej, Andrew Lawrie
{"title":"径向情况下能量临界非线性波动方程的孤立子解","authors":"Jacek Jendrej,&nbsp;Andrew Lawrie","doi":"10.1007/s40818-023-00159-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the focusing energy-critical nonlinear wave equation for radially symmetric initial data in space dimensions <span>\\(D \\ge 4\\)</span>. This equation has a unique (up to sign and scale) nontrivial, finite energy stationary solution <i>W</i>, called the ground state. We prove that every finite energy solution with bounded energy norm resolves, continuously in time, into a finite superposition of asymptotically decoupled copies of the ground state and free radiation.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"9 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-023-00159-4.pdf","citationCount":"5","resultStr":"{\"title\":\"Soliton Resolution for the Energy-Critical Nonlinear Wave Equation in the Radial Case\",\"authors\":\"Jacek Jendrej,&nbsp;Andrew Lawrie\",\"doi\":\"10.1007/s40818-023-00159-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the focusing energy-critical nonlinear wave equation for radially symmetric initial data in space dimensions <span>\\\\(D \\\\ge 4\\\\)</span>. This equation has a unique (up to sign and scale) nontrivial, finite energy stationary solution <i>W</i>, called the ground state. We prove that every finite energy solution with bounded energy norm resolves, continuously in time, into a finite superposition of asymptotically decoupled copies of the ground state and free radiation.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40818-023-00159-4.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-023-00159-4\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-023-00159-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们考虑了空间维(D\ge4\)中径向对称初始数据的聚焦能量临界非线性波动方程。这个方程有一个独特的(直到符号和尺度)非平凡的有限能量平稳解W,称为基态。我们证明了每个具有有界能量范数的有限能量解在时间上连续地分解为基态和自由辐射的渐近解耦副本的有限叠加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soliton Resolution for the Energy-Critical Nonlinear Wave Equation in the Radial Case

We consider the focusing energy-critical nonlinear wave equation for radially symmetric initial data in space dimensions \(D \ge 4\). This equation has a unique (up to sign and scale) nontrivial, finite energy stationary solution W, called the ground state. We prove that every finite energy solution with bounded energy norm resolves, continuously in time, into a finite superposition of asymptotically decoupled copies of the ground state and free radiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信