{"title":"通过线控转向改善车辆操控性","authors":"Jan Sterthoff, Roman Henze, Ferit Küçükay","doi":"10.1007/s41104-021-00079-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on handling improvements enabled through Steer-by-Wire systems, which have increasingly become subject of R&D, as they not only offer the potential for improving vehicle handling but also have many advantages in combination with automated driving. Handling improvements through a steering ratio depending on vehicle speed, as well as steering-wheel angle, are known from Active Front Steering systems. A new overall concept is proposed, that also takes into account lateral and longitudinal acceleration as well as steering rate, which are all available signals in a production car. The overall concept is designed in an optimization process to modify a range of established characteristic parameters known from open-loop maneuvers and the objective evaluation of vehicle handling. In this context, validated models for a vehicle and a Steer-by-Wire system are used to obtain reliable results in simulation. Possibilities for tuning the non-linear steering behavior as well as improvements in the dynamic behavior, especially in yaw damping and response time, are demonstrated.</p></div>","PeriodicalId":100150,"journal":{"name":"Automotive and Engine Technology","volume":"6 1-2","pages":"91 - 98"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41104-021-00079-0","citationCount":"3","resultStr":"{\"title\":\"Vehicle handling improvements through Steer-by-Wire\",\"authors\":\"Jan Sterthoff, Roman Henze, Ferit Küçükay\",\"doi\":\"10.1007/s41104-021-00079-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper focuses on handling improvements enabled through Steer-by-Wire systems, which have increasingly become subject of R&D, as they not only offer the potential for improving vehicle handling but also have many advantages in combination with automated driving. Handling improvements through a steering ratio depending on vehicle speed, as well as steering-wheel angle, are known from Active Front Steering systems. A new overall concept is proposed, that also takes into account lateral and longitudinal acceleration as well as steering rate, which are all available signals in a production car. The overall concept is designed in an optimization process to modify a range of established characteristic parameters known from open-loop maneuvers and the objective evaluation of vehicle handling. In this context, validated models for a vehicle and a Steer-by-Wire system are used to obtain reliable results in simulation. Possibilities for tuning the non-linear steering behavior as well as improvements in the dynamic behavior, especially in yaw damping and response time, are demonstrated.</p></div>\",\"PeriodicalId\":100150,\"journal\":{\"name\":\"Automotive and Engine Technology\",\"volume\":\"6 1-2\",\"pages\":\"91 - 98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41104-021-00079-0\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive and Engine Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41104-021-00079-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive and Engine Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41104-021-00079-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vehicle handling improvements through Steer-by-Wire
This paper focuses on handling improvements enabled through Steer-by-Wire systems, which have increasingly become subject of R&D, as they not only offer the potential for improving vehicle handling but also have many advantages in combination with automated driving. Handling improvements through a steering ratio depending on vehicle speed, as well as steering-wheel angle, are known from Active Front Steering systems. A new overall concept is proposed, that also takes into account lateral and longitudinal acceleration as well as steering rate, which are all available signals in a production car. The overall concept is designed in an optimization process to modify a range of established characteristic parameters known from open-loop maneuvers and the objective evaluation of vehicle handling. In this context, validated models for a vehicle and a Steer-by-Wire system are used to obtain reliable results in simulation. Possibilities for tuning the non-linear steering behavior as well as improvements in the dynamic behavior, especially in yaw damping and response time, are demonstrated.