乘积系统协变表示的Beurling商子空间

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Azad Rohilla, Harsh Trivedi, Shankar Veerabathiran
{"title":"乘积系统协变表示的Beurling商子空间","authors":"Azad Rohilla,&nbsp;Harsh Trivedi,&nbsp;Shankar Veerabathiran","doi":"10.1007/s43034-023-00301-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\((\\sigma , V^{(1)}, \\dots , V^{(k)})\\)</span> be a pure doubly commuting isometric representation of the product system <span>\\({\\mathbb {E}}\\)</span> on a Hilbert space <span>\\({\\mathcal {H}}_{V}.\\)</span> A <span>\\(\\sigma \\)</span>-invariant subspace <span>\\({\\mathcal {K}}\\)</span> is said to be <i>Beurling quotient subspace</i> of <span>\\({\\mathcal {H}}_{V}\\)</span> if there exist a Hilbert space <span>\\({\\mathcal {H}}_W,\\)</span> a pure doubly commuting isometric representation <span>\\((\\pi , W^{(1)}, \\dots , W^{(k)})\\)</span> of <span>\\({\\mathbb {E}}\\)</span> on <span>\\({\\mathcal {H}}_W\\)</span> and an isometric multi-analytic operator <span>\\(M_\\Theta :{{\\mathcal {H}}_W} \\rightarrow {\\mathcal {H}}_{V}\\)</span>, such that </p><div><div><span>$$\\begin{aligned} {\\mathcal {K}}={\\mathcal {H}}_{V}\\ominus M_{\\Theta }{\\mathcal {H}}_W, \\end{aligned}$$</span></div></div><p>where <span>\\(\\Theta : {\\mathcal {W}}_{{\\mathcal {H}}_W} \\rightarrow {\\mathcal {H}}_{V} \\)</span> is an inner operator and <span>\\({\\mathcal {W}}_{{\\mathcal {H}}_W}\\)</span> is the generating wandering subspace for <span>\\((\\pi , W^{(1)}, \\dots , W^{(k)}).\\)</span> In this article, we prove the following characterization of the Beurling quotient subspaces: A subspace <span>\\({\\mathcal {K}}\\)</span> of <span>\\({\\mathcal {H}}_{V}\\)</span> is a Beurling quotient subspace if and only if </p><div><div><span>$$\\begin{aligned}&amp;(I_{E_{j}}\\otimes ( (I_{E_{i}}\\otimes P_{{\\mathcal {K}}}) - \\widetilde{T}^{(i) *}\\widetilde{T}^{(i)}))(t_{i,j} \\otimes I_{{\\mathcal {H}}_{V}})\\\\&amp;(I_{E_{i}}\\otimes ( (I_{E_{j}}\\otimes P_{{\\mathcal {K}}})- \\widetilde{T}^{(j) *}\\widetilde{T}^{(j)}))=0, \\end{aligned}$$</span></div></div><p>where <span>\\(\\widetilde{T}^{(i)}:=P_{{\\mathcal {K}}}\\widetilde{V}^{(i)} (I_{E_{i}} \\otimes P_{{\\mathcal {K}}})\\)</span> and <span>\\( 1 \\le i,j\\le k.\\)</span> As a consequence, we derive a concrete regular dilation theorem for a pure, completely contractive covariant representation <span>\\((\\sigma , V^{(1)}, \\dots , V^{(k)})\\)</span> of <span>\\({\\mathbb {E}}\\)</span> on a Hilbert space <span>\\({\\mathcal {H}}_{V}\\)</span> which satisfies Brehmer–Solel condition and using it and the above characterization, we provide a necessary and sufficient condition that when a completely contractive covariant representation is unitarily equivalent to the compression of the induced representation on the Beurling quotient subspace. Further, we study the relation between Sz. Nagy–Foias-type factorization of isometric multi-analytic operators and joint invariant subspaces of the compression of the induced representation on the Beurling quotient subspace.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-023-00301-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Beurling quotient subspaces for covariant representations of product systems\",\"authors\":\"Azad Rohilla,&nbsp;Harsh Trivedi,&nbsp;Shankar Veerabathiran\",\"doi\":\"10.1007/s43034-023-00301-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\((\\\\sigma , V^{(1)}, \\\\dots , V^{(k)})\\\\)</span> be a pure doubly commuting isometric representation of the product system <span>\\\\({\\\\mathbb {E}}\\\\)</span> on a Hilbert space <span>\\\\({\\\\mathcal {H}}_{V}.\\\\)</span> A <span>\\\\(\\\\sigma \\\\)</span>-invariant subspace <span>\\\\({\\\\mathcal {K}}\\\\)</span> is said to be <i>Beurling quotient subspace</i> of <span>\\\\({\\\\mathcal {H}}_{V}\\\\)</span> if there exist a Hilbert space <span>\\\\({\\\\mathcal {H}}_W,\\\\)</span> a pure doubly commuting isometric representation <span>\\\\((\\\\pi , W^{(1)}, \\\\dots , W^{(k)})\\\\)</span> of <span>\\\\({\\\\mathbb {E}}\\\\)</span> on <span>\\\\({\\\\mathcal {H}}_W\\\\)</span> and an isometric multi-analytic operator <span>\\\\(M_\\\\Theta :{{\\\\mathcal {H}}_W} \\\\rightarrow {\\\\mathcal {H}}_{V}\\\\)</span>, such that </p><div><div><span>$$\\\\begin{aligned} {\\\\mathcal {K}}={\\\\mathcal {H}}_{V}\\\\ominus M_{\\\\Theta }{\\\\mathcal {H}}_W, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\Theta : {\\\\mathcal {W}}_{{\\\\mathcal {H}}_W} \\\\rightarrow {\\\\mathcal {H}}_{V} \\\\)</span> is an inner operator and <span>\\\\({\\\\mathcal {W}}_{{\\\\mathcal {H}}_W}\\\\)</span> is the generating wandering subspace for <span>\\\\((\\\\pi , W^{(1)}, \\\\dots , W^{(k)}).\\\\)</span> In this article, we prove the following characterization of the Beurling quotient subspaces: A subspace <span>\\\\({\\\\mathcal {K}}\\\\)</span> of <span>\\\\({\\\\mathcal {H}}_{V}\\\\)</span> is a Beurling quotient subspace if and only if </p><div><div><span>$$\\\\begin{aligned}&amp;(I_{E_{j}}\\\\otimes ( (I_{E_{i}}\\\\otimes P_{{\\\\mathcal {K}}}) - \\\\widetilde{T}^{(i) *}\\\\widetilde{T}^{(i)}))(t_{i,j} \\\\otimes I_{{\\\\mathcal {H}}_{V}})\\\\\\\\&amp;(I_{E_{i}}\\\\otimes ( (I_{E_{j}}\\\\otimes P_{{\\\\mathcal {K}}})- \\\\widetilde{T}^{(j) *}\\\\widetilde{T}^{(j)}))=0, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\widetilde{T}^{(i)}:=P_{{\\\\mathcal {K}}}\\\\widetilde{V}^{(i)} (I_{E_{i}} \\\\otimes P_{{\\\\mathcal {K}}})\\\\)</span> and <span>\\\\( 1 \\\\le i,j\\\\le k.\\\\)</span> As a consequence, we derive a concrete regular dilation theorem for a pure, completely contractive covariant representation <span>\\\\((\\\\sigma , V^{(1)}, \\\\dots , V^{(k)})\\\\)</span> of <span>\\\\({\\\\mathbb {E}}\\\\)</span> on a Hilbert space <span>\\\\({\\\\mathcal {H}}_{V}\\\\)</span> which satisfies Brehmer–Solel condition and using it and the above characterization, we provide a necessary and sufficient condition that when a completely contractive covariant representation is unitarily equivalent to the compression of the induced representation on the Beurling quotient subspace. Further, we study the relation between Sz. Nagy–Foias-type factorization of isometric multi-analytic operators and joint invariant subspaces of the compression of the induced representation on the Beurling quotient subspace.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43034-023-00301-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-023-00301-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-023-00301-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设\((\sigma,V^{(1)},\dots,V^{(k)})是乘积系统({\mathbb{E}})在Hilbert空间上的纯双交换等距表示,W^(k)})和等距多重分析算子\(M_\Theta:{{\mathcal{H}}_W}\rightarrow{\math cal{H}_{V}\),使得$$\boot{aligned},\end{aligned}$$其中\(\ Theta:{\mathcal{W}}_{\math cal{H}}_W}\rightarrow{\matical{H}}_}V}\)是一个内部运算符,\({\matchal{W}}_{\mathical{H}}-W})是\(((\pi,W^{(1)},\dots,W^(k)})的生成游荡子空间。\)在本文中,我们证明了Beurling商子空间的以下性质:({\mathcal{H}}_{V}\)的子空间\({\ mathcal{K})是Beurling商子空间当且仅当$$\ begin{aligned}&;(I_;(I_ \)和\(1\le I,j\le K.)因此,我们导出了纯的、完全收缩的协变表示\((\sigma,V^{(1)},在满足Brehmer–Solel条件的Hilbert空间({\mathcal{H}}_{V})上,利用它和上述刻画,我们提供了一个充要条件,即当一个完全压缩的协变表示与Beurling商子空间上的诱导表示的压缩是酉等价的。此外,我们还研究了等距多解析算子的Sz.Nagy–Foias型因子分解与Beurling商子空间上诱导表示压缩的联合不变子空间之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beurling quotient subspaces for covariant representations of product systems

Let \((\sigma , V^{(1)}, \dots , V^{(k)})\) be a pure doubly commuting isometric representation of the product system \({\mathbb {E}}\) on a Hilbert space \({\mathcal {H}}_{V}.\) A \(\sigma \)-invariant subspace \({\mathcal {K}}\) is said to be Beurling quotient subspace of \({\mathcal {H}}_{V}\) if there exist a Hilbert space \({\mathcal {H}}_W,\) a pure doubly commuting isometric representation \((\pi , W^{(1)}, \dots , W^{(k)})\) of \({\mathbb {E}}\) on \({\mathcal {H}}_W\) and an isometric multi-analytic operator \(M_\Theta :{{\mathcal {H}}_W} \rightarrow {\mathcal {H}}_{V}\), such that

$$\begin{aligned} {\mathcal {K}}={\mathcal {H}}_{V}\ominus M_{\Theta }{\mathcal {H}}_W, \end{aligned}$$

where \(\Theta : {\mathcal {W}}_{{\mathcal {H}}_W} \rightarrow {\mathcal {H}}_{V} \) is an inner operator and \({\mathcal {W}}_{{\mathcal {H}}_W}\) is the generating wandering subspace for \((\pi , W^{(1)}, \dots , W^{(k)}).\) In this article, we prove the following characterization of the Beurling quotient subspaces: A subspace \({\mathcal {K}}\) of \({\mathcal {H}}_{V}\) is a Beurling quotient subspace if and only if

$$\begin{aligned}&(I_{E_{j}}\otimes ( (I_{E_{i}}\otimes P_{{\mathcal {K}}}) - \widetilde{T}^{(i) *}\widetilde{T}^{(i)}))(t_{i,j} \otimes I_{{\mathcal {H}}_{V}})\\&(I_{E_{i}}\otimes ( (I_{E_{j}}\otimes P_{{\mathcal {K}}})- \widetilde{T}^{(j) *}\widetilde{T}^{(j)}))=0, \end{aligned}$$

where \(\widetilde{T}^{(i)}:=P_{{\mathcal {K}}}\widetilde{V}^{(i)} (I_{E_{i}} \otimes P_{{\mathcal {K}}})\) and \( 1 \le i,j\le k.\) As a consequence, we derive a concrete regular dilation theorem for a pure, completely contractive covariant representation \((\sigma , V^{(1)}, \dots , V^{(k)})\) of \({\mathbb {E}}\) on a Hilbert space \({\mathcal {H}}_{V}\) which satisfies Brehmer–Solel condition and using it and the above characterization, we provide a necessary and sufficient condition that when a completely contractive covariant representation is unitarily equivalent to the compression of the induced representation on the Beurling quotient subspace. Further, we study the relation between Sz. Nagy–Foias-type factorization of isometric multi-analytic operators and joint invariant subspaces of the compression of the induced representation on the Beurling quotient subspace.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信