Jan Breitkreuz, Gabriela Brückner, Jan Pablo Burgard, Joscha Krause, Ralf Münnich, Helmut Schröder, Katrin Schüssel
{"title":"以2型糖尿病为例,根据常规数据估计德国人群的小规模疾病频率","authors":"Jan Breitkreuz, Gabriela Brückner, Jan Pablo Burgard, Joscha Krause, Ralf Münnich, Helmut Schröder, Katrin Schüssel","doi":"10.1007/s11943-019-00241-z","DOIUrl":null,"url":null,"abstract":"<div><h2>Zusammenfassung</h2><div><p>Die Erfassung regionaler Krankheitsverteilungen ist ein zentrales Element in der Planung und Gestaltung adäquater Gesundheitsversorgung. In der öffentlichen Gesundheitsberichtserstattung liegen Schätzungen kleinräumiger Krankheitshäufigkeiten in der Regel nicht vor. Aufgrund begrenzter Ressourcen und zu wenigen ortsspezifischen Beobachtungen ist es meist nicht möglich regionale Krankheitsverteilungen mit hinreichender Genauigkeit zu quantifizieren. Hier repräsentieren Krankenkassendaten eine wichtige Alternative. Der Versichertenstamm einer Krankenkasse ist meist viel größer als der Stichprobenumfang einer Gesundheitserhebung. Zusätzlich handelt es sich bei den Daten einer Krankenkasse um Abrechnungsdaten, welche automatisch erfasst und nicht aufwändig erhoben werden müssen. Doch wenn regionale Krankheitshäufigkeiten anhand von Krankenkassendaten geschätzt werden, muss beachtet werden, dass der Versichertenstamm einer Krankenkasse keine zufällige Teilpopulation der Gesamtbevölkerung darstellt. Aufgrund verschiedener Eigenschaften des deutschen Gesundheitssystems ist die Kassenzugehörigkeit einer Person informativ für ihre Morbidität hinsichtlich verschiedener Krankheiten. Folglich muss eine Bias-Korrektur bei der Schätzung erfolgen, um valide Ergebnisse zu erhalten. Im Zuge des AOK-internen Projekts <i>Gesundheitsatlas</i> des Wissenschaftlichen Instituts der AOK (WIdO) wurde zusammen mit der Universität Trier eine Methodik entwickelt, welche diese Problematik behandelt. Sie ermöglicht die Quantifizierung kleinräumiger Krankheitshäufigkeiten anhand von anonymisierten Krankenkassendaten mit einer Multi-Source-Schätzung. Durch multivariate Analyseverfahren sowie modellbasierte Inferenz werden die anonymisierten AOK-Routinedaten und stationäre Behandlungshäufigkeiten aller Krankenhausfälle zu einer Bias-korrigierenden Schätzmethodik kombiniert. In dem vorliegenden Beitrag wird diese Methodik beschrieben und ihre Effektivität am Beispiel von Diabetes Mellitus Typ 2 demonstriert. Ausgehend vom Versichertenstamm der <i>AOK – die Gesundheitskasse</i> sowie deren Leistungsdaten werden alters- und geschlechtsreferenzierte Krankheitshäufigkeiten auf Kreisebene für die gesamte deutsche Bevölkerung geschätzt. Es kann gezeigt werden, dass der Ansatz plausible Ergebnisse auf regionalen Ebenen liefert und somit die Darstellung der gesundheitlichen Lage in bisher nicht erreichter Detailtiefe ermöglicht.</p></div></div>","PeriodicalId":100134,"journal":{"name":"AStA Wirtschafts- und Sozialstatistisches Archiv","volume":"13 1","pages":"35 - 72"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11943-019-00241-z","citationCount":"9","resultStr":"{\"title\":\"Schätzung kleinräumiger Krankheitshäufigkeiten für die deutsche Bevölkerung anhand von Routinedaten am Beispiel von Typ-2-Diabetes\",\"authors\":\"Jan Breitkreuz, Gabriela Brückner, Jan Pablo Burgard, Joscha Krause, Ralf Münnich, Helmut Schröder, Katrin Schüssel\",\"doi\":\"10.1007/s11943-019-00241-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Zusammenfassung</h2><div><p>Die Erfassung regionaler Krankheitsverteilungen ist ein zentrales Element in der Planung und Gestaltung adäquater Gesundheitsversorgung. In der öffentlichen Gesundheitsberichtserstattung liegen Schätzungen kleinräumiger Krankheitshäufigkeiten in der Regel nicht vor. Aufgrund begrenzter Ressourcen und zu wenigen ortsspezifischen Beobachtungen ist es meist nicht möglich regionale Krankheitsverteilungen mit hinreichender Genauigkeit zu quantifizieren. Hier repräsentieren Krankenkassendaten eine wichtige Alternative. Der Versichertenstamm einer Krankenkasse ist meist viel größer als der Stichprobenumfang einer Gesundheitserhebung. Zusätzlich handelt es sich bei den Daten einer Krankenkasse um Abrechnungsdaten, welche automatisch erfasst und nicht aufwändig erhoben werden müssen. Doch wenn regionale Krankheitshäufigkeiten anhand von Krankenkassendaten geschätzt werden, muss beachtet werden, dass der Versichertenstamm einer Krankenkasse keine zufällige Teilpopulation der Gesamtbevölkerung darstellt. Aufgrund verschiedener Eigenschaften des deutschen Gesundheitssystems ist die Kassenzugehörigkeit einer Person informativ für ihre Morbidität hinsichtlich verschiedener Krankheiten. Folglich muss eine Bias-Korrektur bei der Schätzung erfolgen, um valide Ergebnisse zu erhalten. Im Zuge des AOK-internen Projekts <i>Gesundheitsatlas</i> des Wissenschaftlichen Instituts der AOK (WIdO) wurde zusammen mit der Universität Trier eine Methodik entwickelt, welche diese Problematik behandelt. Sie ermöglicht die Quantifizierung kleinräumiger Krankheitshäufigkeiten anhand von anonymisierten Krankenkassendaten mit einer Multi-Source-Schätzung. Durch multivariate Analyseverfahren sowie modellbasierte Inferenz werden die anonymisierten AOK-Routinedaten und stationäre Behandlungshäufigkeiten aller Krankenhausfälle zu einer Bias-korrigierenden Schätzmethodik kombiniert. In dem vorliegenden Beitrag wird diese Methodik beschrieben und ihre Effektivität am Beispiel von Diabetes Mellitus Typ 2 demonstriert. Ausgehend vom Versichertenstamm der <i>AOK – die Gesundheitskasse</i> sowie deren Leistungsdaten werden alters- und geschlechtsreferenzierte Krankheitshäufigkeiten auf Kreisebene für die gesamte deutsche Bevölkerung geschätzt. Es kann gezeigt werden, dass der Ansatz plausible Ergebnisse auf regionalen Ebenen liefert und somit die Darstellung der gesundheitlichen Lage in bisher nicht erreichter Detailtiefe ermöglicht.</p></div></div>\",\"PeriodicalId\":100134,\"journal\":{\"name\":\"AStA Wirtschafts- und Sozialstatistisches Archiv\",\"volume\":\"13 1\",\"pages\":\"35 - 72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11943-019-00241-z\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AStA Wirtschafts- und Sozialstatistisches Archiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11943-019-00241-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AStA Wirtschafts- und Sozialstatistisches Archiv","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11943-019-00241-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Schätzung kleinräumiger Krankheitshäufigkeiten für die deutsche Bevölkerung anhand von Routinedaten am Beispiel von Typ-2-Diabetes
Zusammenfassung
Die Erfassung regionaler Krankheitsverteilungen ist ein zentrales Element in der Planung und Gestaltung adäquater Gesundheitsversorgung. In der öffentlichen Gesundheitsberichtserstattung liegen Schätzungen kleinräumiger Krankheitshäufigkeiten in der Regel nicht vor. Aufgrund begrenzter Ressourcen und zu wenigen ortsspezifischen Beobachtungen ist es meist nicht möglich regionale Krankheitsverteilungen mit hinreichender Genauigkeit zu quantifizieren. Hier repräsentieren Krankenkassendaten eine wichtige Alternative. Der Versichertenstamm einer Krankenkasse ist meist viel größer als der Stichprobenumfang einer Gesundheitserhebung. Zusätzlich handelt es sich bei den Daten einer Krankenkasse um Abrechnungsdaten, welche automatisch erfasst und nicht aufwändig erhoben werden müssen. Doch wenn regionale Krankheitshäufigkeiten anhand von Krankenkassendaten geschätzt werden, muss beachtet werden, dass der Versichertenstamm einer Krankenkasse keine zufällige Teilpopulation der Gesamtbevölkerung darstellt. Aufgrund verschiedener Eigenschaften des deutschen Gesundheitssystems ist die Kassenzugehörigkeit einer Person informativ für ihre Morbidität hinsichtlich verschiedener Krankheiten. Folglich muss eine Bias-Korrektur bei der Schätzung erfolgen, um valide Ergebnisse zu erhalten. Im Zuge des AOK-internen Projekts Gesundheitsatlas des Wissenschaftlichen Instituts der AOK (WIdO) wurde zusammen mit der Universität Trier eine Methodik entwickelt, welche diese Problematik behandelt. Sie ermöglicht die Quantifizierung kleinräumiger Krankheitshäufigkeiten anhand von anonymisierten Krankenkassendaten mit einer Multi-Source-Schätzung. Durch multivariate Analyseverfahren sowie modellbasierte Inferenz werden die anonymisierten AOK-Routinedaten und stationäre Behandlungshäufigkeiten aller Krankenhausfälle zu einer Bias-korrigierenden Schätzmethodik kombiniert. In dem vorliegenden Beitrag wird diese Methodik beschrieben und ihre Effektivität am Beispiel von Diabetes Mellitus Typ 2 demonstriert. Ausgehend vom Versichertenstamm der AOK – die Gesundheitskasse sowie deren Leistungsdaten werden alters- und geschlechtsreferenzierte Krankheitshäufigkeiten auf Kreisebene für die gesamte deutsche Bevölkerung geschätzt. Es kann gezeigt werden, dass der Ansatz plausible Ergebnisse auf regionalen Ebenen liefert und somit die Darstellung der gesundheitlichen Lage in bisher nicht erreichter Detailtiefe ermöglicht.