关于马斯卡特方程的柯西问题。II: 关键初始数据

IF 2.4 1区 数学 Q1 MATHEMATICS
Thomas Alazard, Quoc-Hung Nguyen
{"title":"关于马斯卡特方程的柯西问题。II: 关键初始数据","authors":"Thomas Alazard,&nbsp;Quoc-Hung Nguyen","doi":"10.1007/s40818-021-00099-x","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the Cauchy problem for the Muskat equation is well-posed locally in time for any initial data in the critical space of Lipschitz functions with three-half derivative in <span>\\(L^2\\)</span>. Moreover, we prove that the solution exists globally in time under a smallness assumption.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40818-021-00099-x","citationCount":"1","resultStr":"{\"title\":\"On the Cauchy Problem for the Muskat Equation. II: Critical Initial Data\",\"authors\":\"Thomas Alazard,&nbsp;Quoc-Hung Nguyen\",\"doi\":\"10.1007/s40818-021-00099-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that the Cauchy problem for the Muskat equation is well-posed locally in time for any initial data in the critical space of Lipschitz functions with three-half derivative in <span>\\\\(L^2\\\\)</span>. Moreover, we prove that the solution exists globally in time under a smallness assumption.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40818-021-00099-x\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-021-00099-x\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00099-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了Muskat方程的Cauchy问题对于Lipschitz函数的临界空间中的任何初始数据在时间上是局部适定的,该函数在\(L^2)中具有三个半导数。此外,我们还证明了在小假设下,该解在时间上是全局存在的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Cauchy Problem for the Muskat Equation. II: Critical Initial Data

We prove that the Cauchy problem for the Muskat equation is well-posed locally in time for any initial data in the critical space of Lipschitz functions with three-half derivative in \(L^2\). Moreover, we prove that the solution exists globally in time under a smallness assumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信