关于适用于数值目的的\(\mathbb{R}^{n}\)中参数化曲线的弹性流

IF 1 3区 数学 Q1 MATHEMATICS
Paola Pozzi
{"title":"关于适用于数值目的的\\(\\mathbb{R}^{n}\\)中参数化曲线的弹性流","authors":"Paola Pozzi","doi":"10.1007/s10231-023-01329-8","DOIUrl":null,"url":null,"abstract":"<div><p>In Pozzi and Stinner (ESAIM: M2AN 57:445–466, 2023) a variant of the classical elastic flow for closed curves in <span>\\(\\mathbb {R}^{n}\\)</span> was introduced, that is more suitable for numerical purposes. Here we investigate the long-time properties of such evolution demonstrating that the flow exists globally in time.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-023-01329-8.pdf","citationCount":"1","resultStr":"{\"title\":\"On an elastic flow for parametrized curves in \\\\(\\\\mathbb {R}^{n}\\\\) suitable for numerical purposes\",\"authors\":\"Paola Pozzi\",\"doi\":\"10.1007/s10231-023-01329-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Pozzi and Stinner (ESAIM: M2AN 57:445–466, 2023) a variant of the classical elastic flow for closed curves in <span>\\\\(\\\\mathbb {R}^{n}\\\\)</span> was introduced, that is more suitable for numerical purposes. Here we investigate the long-time properties of such evolution demonstrating that the flow exists globally in time.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-023-01329-8.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01329-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01329-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在Pozzi和Stinner(ESAIM:M2AN 57:445–4662023)中,引入了\(\mathbb{R}^{n}\)中闭合曲线的经典弹性流的一种变体,该变体更适合于数值目的。在这里,我们研究了这种进化的长期性质,证明了流动在时间上是全局存在的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an elastic flow for parametrized curves in \(\mathbb {R}^{n}\) suitable for numerical purposes

In Pozzi and Stinner (ESAIM: M2AN 57:445–466, 2023) a variant of the classical elastic flow for closed curves in \(\mathbb {R}^{n}\) was introduced, that is more suitable for numerical purposes. Here we investigate the long-time properties of such evolution demonstrating that the flow exists globally in time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信