具有函数、分类和混合协变量的非参数回归和分类

IF 1.4 4区 计算机科学 Q2 STATISTICS & PROBABILITY
Leonie Selk, Jan Gertheiss
{"title":"具有函数、分类和混合协变量的非参数回归和分类","authors":"Leonie Selk,&nbsp;Jan Gertheiss","doi":"10.1007/s11634-022-00513-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider nonparametric prediction with multiple covariates, in particular categorical or functional predictors, or a mixture of both. The method proposed bases on an extension of the Nadaraya-Watson estimator where a kernel function is applied on a linear combination of distance measures each calculated on single covariates, with weights being estimated from the training data. The dependent variable can be categorical (binary or multi-class) or continuous, thus we consider both classification and regression problems. The methodology presented is illustrated and evaluated on artificial and real world data. Particularly it is observed that prediction accuracy can be increased, and irrelevant, noise variables can be identified/removed by ‘downgrading’ the corresponding distance measures in a completely data-driven way.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"17 2","pages":"519 - 543"},"PeriodicalIF":1.4000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11634-022-00513-7.pdf","citationCount":"4","resultStr":"{\"title\":\"Nonparametric regression and classification with functional, categorical, and mixed covariates\",\"authors\":\"Leonie Selk,&nbsp;Jan Gertheiss\",\"doi\":\"10.1007/s11634-022-00513-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider nonparametric prediction with multiple covariates, in particular categorical or functional predictors, or a mixture of both. The method proposed bases on an extension of the Nadaraya-Watson estimator where a kernel function is applied on a linear combination of distance measures each calculated on single covariates, with weights being estimated from the training data. The dependent variable can be categorical (binary or multi-class) or continuous, thus we consider both classification and regression problems. The methodology presented is illustrated and evaluated on artificial and real world data. Particularly it is observed that prediction accuracy can be increased, and irrelevant, noise variables can be identified/removed by ‘downgrading’ the corresponding distance measures in a completely data-driven way.</p></div>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"17 2\",\"pages\":\"519 - 543\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11634-022-00513-7.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11634-022-00513-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-022-00513-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑具有多个协变量的非参数预测,特别是分类或函数预测,或两者的混合。所提出的方法基于Nadaraya-WWatson估计器的扩展,其中核函数应用于距离测量的线性组合,每个距离测量都是在单个协变量上计算的,权重是从训练数据中估计的。因变量可以是分类的(二元或多类)或连续的,因此我们同时考虑分类和回归问题。所提出的方法在人工和真实世界的数据上进行了说明和评估。特别是可以观察到,通过以完全数据驱动的方式“降级”相应的距离测量,可以提高预测精度,并且可以识别/去除无关的噪声变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonparametric regression and classification with functional, categorical, and mixed covariates

Nonparametric regression and classification with functional, categorical, and mixed covariates

We consider nonparametric prediction with multiple covariates, in particular categorical or functional predictors, or a mixture of both. The method proposed bases on an extension of the Nadaraya-Watson estimator where a kernel function is applied on a linear combination of distance measures each calculated on single covariates, with weights being estimated from the training data. The dependent variable can be categorical (binary or multi-class) or continuous, thus we consider both classification and regression problems. The methodology presented is illustrated and evaluated on artificial and real world data. Particularly it is observed that prediction accuracy can be increased, and irrelevant, noise variables can be identified/removed by ‘downgrading’ the corresponding distance measures in a completely data-driven way.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信