用于结构研究的功能性G蛋白偶联受体在大肠杆菌中的高效生产

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Layara Akemi Abiko, Marco Rogowski, Antoine Gautier, Gebhard Schertler, Stephan Grzesiek
{"title":"用于结构研究的功能性G蛋白偶联受体在大肠杆菌中的高效生产","authors":"Layara Akemi Abiko,&nbsp;Marco Rogowski,&nbsp;Antoine Gautier,&nbsp;Gebhard Schertler,&nbsp;Stephan Grzesiek","doi":"10.1007/s10858-020-00354-6","DOIUrl":null,"url":null,"abstract":"<p>G protein-coupled receptors (GPCRs) are transmembrane signal transducers which regulate many key physiological process. Since their discovery, their analysis has been limited by difficulties in obtaining sufficient amounts of the receptors in high-quality, functional form from heterologous expression hosts. Albeit highly attractive because of its simplicity and the ease of isotope labeling for NMR studies, heterologous expression of functional GPCRs in <i>E. coli</i> has proven particularly challenging due to the absence of the more evolved protein expression and folding machinery of higher eukaryotic hosts. Here we first give an overview on the previous strategies for GPCR <i>E. coli</i> expression and then describe the development of an optimized robust protocol for the <i>E. coli</i> expression and purification of two mutants of the turkey β<sub>1</sub>-adrenergic receptor (β<sub>1</sub>AR) uniformly or selectively labeled in <sup>15</sup>N or <sup>2</sup>H,<sup>15</sup>N. These mutants had been previously optimized for thermal stability using insect cell expression and used successfully in crystallographic and NMR studies. The same sequences were then used for <i>E. coli</i> expression. Optimization of <i>E. coli</i> expression was achieved by a quantitative analysis of losses of receptor material at each step of the solubilization and purification procedure. Final yields are 0.2–0.3?mg receptor per liter culture. Whereas both expressed mutants are well folded and competent for orthosteric ligand binding, the less stable YY-β<sub>1</sub>AR mutant also comprises the two native tyrosines Y<sup>5.58</sup> and Y<sup>7.53</sup>, which enable G protein binding. High-quality <sup>1</sup>H-<sup>15</sup>N TROSY spectra were obtained for <i>E. coli</i>-expressed YY-β<sub>1</sub>AR in three different functional states (antagonist, agonist, and agonist?+?G protein-mimicking nanobody-bound), which are identical to spectra obtained of the same forms of the receptor expressed in insect cells. NdeI and AgeI restriction sites introduced into the expression plasmid allow for the easy replacement of the receptor gene by other GPCR genes of interest, and the provided quantitative workflow analysis may guide the respective adaptation of the purification protocol.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-020-00354-6","citationCount":"7","resultStr":"{\"title\":\"Efficient production of a functional G protein-coupled receptor in E. coli for structural studies\",\"authors\":\"Layara Akemi Abiko,&nbsp;Marco Rogowski,&nbsp;Antoine Gautier,&nbsp;Gebhard Schertler,&nbsp;Stephan Grzesiek\",\"doi\":\"10.1007/s10858-020-00354-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>G protein-coupled receptors (GPCRs) are transmembrane signal transducers which regulate many key physiological process. Since their discovery, their analysis has been limited by difficulties in obtaining sufficient amounts of the receptors in high-quality, functional form from heterologous expression hosts. Albeit highly attractive because of its simplicity and the ease of isotope labeling for NMR studies, heterologous expression of functional GPCRs in <i>E. coli</i> has proven particularly challenging due to the absence of the more evolved protein expression and folding machinery of higher eukaryotic hosts. Here we first give an overview on the previous strategies for GPCR <i>E. coli</i> expression and then describe the development of an optimized robust protocol for the <i>E. coli</i> expression and purification of two mutants of the turkey β<sub>1</sub>-adrenergic receptor (β<sub>1</sub>AR) uniformly or selectively labeled in <sup>15</sup>N or <sup>2</sup>H,<sup>15</sup>N. These mutants had been previously optimized for thermal stability using insect cell expression and used successfully in crystallographic and NMR studies. The same sequences were then used for <i>E. coli</i> expression. Optimization of <i>E. coli</i> expression was achieved by a quantitative analysis of losses of receptor material at each step of the solubilization and purification procedure. Final yields are 0.2–0.3?mg receptor per liter culture. Whereas both expressed mutants are well folded and competent for orthosteric ligand binding, the less stable YY-β<sub>1</sub>AR mutant also comprises the two native tyrosines Y<sup>5.58</sup> and Y<sup>7.53</sup>, which enable G protein binding. High-quality <sup>1</sup>H-<sup>15</sup>N TROSY spectra were obtained for <i>E. coli</i>-expressed YY-β<sub>1</sub>AR in three different functional states (antagonist, agonist, and agonist?+?G protein-mimicking nanobody-bound), which are identical to spectra obtained of the same forms of the receptor expressed in insect cells. NdeI and AgeI restriction sites introduced into the expression plasmid allow for the easy replacement of the receptor gene by other GPCR genes of interest, and the provided quantitative workflow analysis may guide the respective adaptation of the purification protocol.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10858-020-00354-6\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10858-020-00354-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-020-00354-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

G蛋白偶联受体(gpcr)是一种跨膜信号转导器,它调节着许多重要的生理过程。自发现以来,由于难以从异源表达宿主中获得足够数量的高质量、功能形式的受体,他们的分析受到限制。尽管由于其简单性和易于进行核磁共振研究的同位素标记而具有很高的吸引力,但由于缺乏更进化的蛋白质表达和高级真核宿主的折叠机制,在大肠杆菌中表达功能性gpcr已被证明特别具有挑战性。在这里,我们首先概述了以前的GPCR大肠杆菌表达策略,然后描述了一种优化的稳健方案,用于在15N或2H,15N下均匀或选择性标记火鸡β1-肾上腺素能受体(β1AR)的两个突变体的大肠杆菌表达和纯化。这些突变体以前已经通过昆虫细胞表达优化了热稳定性,并成功地用于晶体学和核磁共振研究。同样的序列随后被用于大肠杆菌的表达。通过定量分析溶解和纯化过程中每一步受体材料的损失,实现了大肠杆菌表达的优化。最终收益率为0.2-0.3 ?每升培养Mg受体。虽然这两种表达的突变体都折叠良好,能够与正位配体结合,但稳定性较差的YY-β1AR突变体也含有两种天然酪氨酸Y5.58和Y7.53,这两种酪氨酸能够与G蛋白结合。大肠杆菌表达的YY-β1AR在三种不同的功能状态(拮抗剂、激动剂和激动剂?+?)下获得了高质量的1H-15N TROSY光谱。G蛋白模拟纳米体结合),这与在昆虫细胞中表达的相同形式的受体获得的光谱相同。在表达质粒中引入NdeI和AgeI酶切位点,使得受体基因很容易被其他感兴趣的GPCR基因取代,并且提供的定量工作流程分析可以指导各自的纯化方案的适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient production of a functional G protein-coupled receptor in E. coli for structural studies

Efficient production of a functional G protein-coupled receptor in E. coli for structural studies

G protein-coupled receptors (GPCRs) are transmembrane signal transducers which regulate many key physiological process. Since their discovery, their analysis has been limited by difficulties in obtaining sufficient amounts of the receptors in high-quality, functional form from heterologous expression hosts. Albeit highly attractive because of its simplicity and the ease of isotope labeling for NMR studies, heterologous expression of functional GPCRs in E. coli has proven particularly challenging due to the absence of the more evolved protein expression and folding machinery of higher eukaryotic hosts. Here we first give an overview on the previous strategies for GPCR E. coli expression and then describe the development of an optimized robust protocol for the E. coli expression and purification of two mutants of the turkey β1-adrenergic receptor (β1AR) uniformly or selectively labeled in 15N or 2H,15N. These mutants had been previously optimized for thermal stability using insect cell expression and used successfully in crystallographic and NMR studies. The same sequences were then used for E. coli expression. Optimization of E. coli expression was achieved by a quantitative analysis of losses of receptor material at each step of the solubilization and purification procedure. Final yields are 0.2–0.3?mg receptor per liter culture. Whereas both expressed mutants are well folded and competent for orthosteric ligand binding, the less stable YY-β1AR mutant also comprises the two native tyrosines Y5.58 and Y7.53, which enable G protein binding. High-quality 1H-15N TROSY spectra were obtained for E. coli-expressed YY-β1AR in three different functional states (antagonist, agonist, and agonist?+?G protein-mimicking nanobody-bound), which are identical to spectra obtained of the same forms of the receptor expressed in insect cells. NdeI and AgeI restriction sites introduced into the expression plasmid allow for the easy replacement of the receptor gene by other GPCR genes of interest, and the provided quantitative workflow analysis may guide the respective adaptation of the purification protocol.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信