具有可变参考轨迹和拓扑的随机多智能体系统的迭代学习控制

IF 0.6 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
A. S. Koposov, P. V. Pakshin
{"title":"具有可变参考轨迹和拓扑的随机多智能体系统的迭代学习控制","authors":"A. S. Koposov,&nbsp;P. V. Pakshin","doi":"10.1134/S0005117923060073","DOIUrl":null,"url":null,"abstract":"<p>In modern smart manufacturing, robots are often connected via a network, and their task can change according to a predetermined program. Iterative learning control (ILC) is widely used for robots executing high-precision operations. Under network conditions, the efficiency of ILC algorithms may decrease if the program is restructured. In particular, the learning error may temporarily increase to an unacceptable value when changing the reference trajectory. This paper considers a networked system with the following features: the reference trajectory and parameters change between passes according to a known program, agents are subjected to random disturbances, and measurements are carried out with noise. In addition, the network topology changes due to the disconnection of some agents from the network and the connection of new agents to the network according to a given program. A distributed ILC design method is proposed based on vector Lyapunov functions for repetitive processes in combination with Kalman filtering. This method ensures the convergence of the learning error and reduces its increase caused by changes in the reference trajectory and network topology. The effectiveness of the proposed method is confirmed by an example.</p>","PeriodicalId":55411,"journal":{"name":"Automation and Remote Control","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative Learning Control of Stochastic Multi-Agent Systems with Variable Reference Trajectory and Topology\",\"authors\":\"A. S. Koposov,&nbsp;P. V. Pakshin\",\"doi\":\"10.1134/S0005117923060073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In modern smart manufacturing, robots are often connected via a network, and their task can change according to a predetermined program. Iterative learning control (ILC) is widely used for robots executing high-precision operations. Under network conditions, the efficiency of ILC algorithms may decrease if the program is restructured. In particular, the learning error may temporarily increase to an unacceptable value when changing the reference trajectory. This paper considers a networked system with the following features: the reference trajectory and parameters change between passes according to a known program, agents are subjected to random disturbances, and measurements are carried out with noise. In addition, the network topology changes due to the disconnection of some agents from the network and the connection of new agents to the network according to a given program. A distributed ILC design method is proposed based on vector Lyapunov functions for repetitive processes in combination with Kalman filtering. This method ensures the convergence of the learning error and reduces its increase caused by changes in the reference trajectory and network topology. The effectiveness of the proposed method is confirmed by an example.</p>\",\"PeriodicalId\":55411,\"journal\":{\"name\":\"Automation and Remote Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation and Remote Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0005117923060073\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation and Remote Control","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1134/S0005117923060073","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在现代智能制造中,机器人通常通过网络连接,它们的任务可以根据预定的程序发生变化。迭代学习控制(ILC)被广泛用于执行高精度操作的机器人。在网络条件下,如果对程序进行重构,ILC算法的效率可能会降低。特别地,当改变参考轨迹时,学习误差可能暂时增加到不可接受的值。本文考虑了一个具有以下特征的网络化系统:参考轨迹和参数在通过之间根据已知程序变化,代理受到随机干扰,并且在有噪声的情况下进行测量。此外,由于某些代理与网络断开连接,以及根据给定程序将新代理连接到网络,网络拓扑结构也会发生变化。针对重复过程,结合卡尔曼滤波,提出了一种基于向量李雅普诺夫函数的分布式ILC设计方法。该方法确保了学习误差的收敛性,并减少了由于参考轨迹和网络拓扑结构的变化而导致的学习误差的增加。实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Iterative Learning Control of Stochastic Multi-Agent Systems with Variable Reference Trajectory and Topology

Iterative Learning Control of Stochastic Multi-Agent Systems with Variable Reference Trajectory and Topology

In modern smart manufacturing, robots are often connected via a network, and their task can change according to a predetermined program. Iterative learning control (ILC) is widely used for robots executing high-precision operations. Under network conditions, the efficiency of ILC algorithms may decrease if the program is restructured. In particular, the learning error may temporarily increase to an unacceptable value when changing the reference trajectory. This paper considers a networked system with the following features: the reference trajectory and parameters change between passes according to a known program, agents are subjected to random disturbances, and measurements are carried out with noise. In addition, the network topology changes due to the disconnection of some agents from the network and the connection of new agents to the network according to a given program. A distributed ILC design method is proposed based on vector Lyapunov functions for repetitive processes in combination with Kalman filtering. This method ensures the convergence of the learning error and reduces its increase caused by changes in the reference trajectory and network topology. The effectiveness of the proposed method is confirmed by an example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation and Remote Control
Automation and Remote Control 工程技术-仪器仪表
CiteScore
1.70
自引率
28.60%
发文量
90
审稿时长
3-8 weeks
期刊介绍: Automation and Remote Control is one of the first journals on control theory. The scope of the journal is control theory problems and applications. The journal publishes reviews, original articles, and short communications (deterministic, stochastic, adaptive, and robust formulations) and its applications (computer control, components and instruments, process control, social and economy control, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信