探讨LSH参数对隐私保护个性化的影响

Q1 Engineering
Armen Aghasaryan, Makram Bouzid, Dimitre Kostadinov, Animesh Nandi
{"title":"探讨LSH参数对隐私保护个性化的影响","authors":"Armen Aghasaryan,&nbsp;Makram Bouzid,&nbsp;Dimitre Kostadinov,&nbsp;Animesh Nandi","doi":"10.1002/bltj.21644","DOIUrl":null,"url":null,"abstract":"<p>The “privacy versus personalization” dilemma refers to the situation in which it is necessary for users to disclose their sensitive personal data in order to benefit from collaborative personalized services. Solving this dilemma is a challenge because generating collaborative filtering recommendations requires access to the set of all user profiles in order to identify similar ones, and to compute the top-rated items. The privacy-preserving personalization (P3) paradigm builds on the idea of using locality-sensitive hashing (LSH) to find groups of similar users, while keeping their profiles local. In this work, we analyze the behavior of the adapted LSH algorithm from the perspective of the quality of final recommendations and the distribution of cluster sizes. We investigate the impact of different LSH parameter configurations on the basis of the MovieLens dataset, and empirically show a small, non-prohibitive cost ofprivacy protection on the recommendations' quality. © 2014 Alcatel-Lucent.</p>","PeriodicalId":55592,"journal":{"name":"Bell Labs Technical Journal","volume":"18 4","pages":"33-44"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/bltj.21644","citationCount":"1","resultStr":"{\"title\":\"Exploring the Impact of LSH Parameters in Privacy-Preserving Personalization\",\"authors\":\"Armen Aghasaryan,&nbsp;Makram Bouzid,&nbsp;Dimitre Kostadinov,&nbsp;Animesh Nandi\",\"doi\":\"10.1002/bltj.21644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The “privacy versus personalization” dilemma refers to the situation in which it is necessary for users to disclose their sensitive personal data in order to benefit from collaborative personalized services. Solving this dilemma is a challenge because generating collaborative filtering recommendations requires access to the set of all user profiles in order to identify similar ones, and to compute the top-rated items. The privacy-preserving personalization (P3) paradigm builds on the idea of using locality-sensitive hashing (LSH) to find groups of similar users, while keeping their profiles local. In this work, we analyze the behavior of the adapted LSH algorithm from the perspective of the quality of final recommendations and the distribution of cluster sizes. We investigate the impact of different LSH parameter configurations on the basis of the MovieLens dataset, and empirically show a small, non-prohibitive cost ofprivacy protection on the recommendations' quality. © 2014 Alcatel-Lucent.</p>\",\"PeriodicalId\":55592,\"journal\":{\"name\":\"Bell Labs Technical Journal\",\"volume\":\"18 4\",\"pages\":\"33-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/bltj.21644\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bell Labs Technical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bltj.21644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bell Labs Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bltj.21644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

“隐私与个性化”困境是指用户有必要披露其敏感个人数据,以便从协作个性化服务中受益。解决这一困境是一个挑战,因为生成协作过滤推荐需要访问所有用户配置文件的集合,以便识别相似的用户配置文件,并计算评分最高的项目。隐私保护个性化(P3)范式建立在使用位置敏感哈希(LSH)来查找相似用户组的思想之上,同时保持他们的个人资料在本地。在这项工作中,我们从最终推荐的质量和聚类大小的分布的角度分析了自适应LSH算法的行为。我们在MovieLens数据集的基础上研究了不同LSH参数配置的影响,并从经验上表明,隐私保护对推荐质量的影响很小,而且成本不高。。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Impact of LSH Parameters in Privacy-Preserving Personalization

The “privacy versus personalization” dilemma refers to the situation in which it is necessary for users to disclose their sensitive personal data in order to benefit from collaborative personalized services. Solving this dilemma is a challenge because generating collaborative filtering recommendations requires access to the set of all user profiles in order to identify similar ones, and to compute the top-rated items. The privacy-preserving personalization (P3) paradigm builds on the idea of using locality-sensitive hashing (LSH) to find groups of similar users, while keeping their profiles local. In this work, we analyze the behavior of the adapted LSH algorithm from the perspective of the quality of final recommendations and the distribution of cluster sizes. We investigate the impact of different LSH parameter configurations on the basis of the MovieLens dataset, and empirically show a small, non-prohibitive cost ofprivacy protection on the recommendations' quality. © 2014 Alcatel-Lucent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bell Labs Technical Journal
Bell Labs Technical Journal 工程技术-电信学
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The Bell Labs Technical Journal (BLTJ) highlights key research and development activities across Alcatel-Lucent — within Bell Labs, within the company’s CTO organizations, and in cross-functional projects and initiatives. It publishes papers and letters by Alcatel-Lucent researchers, scientists, and engineers and co-authors affiliated with universities, government and corporate research labs, and customer companies. Its aim is to promote progress in communications fields worldwide; Bell Labs innovations enable Alcatel-Lucent to deliver leading products, solutions, and services that meet customers’ mission critical needs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信