{"title":"大型和动态网络的可扩展算法:减少小型计算的大数据","authors":"Iraj Saniee","doi":"10.15325/BLTJ.2015.2437465","DOIUrl":null,"url":null,"abstract":"In this paper we summarize recent research regarding a novel characterization of large-scale real-life informational networks which can be leveraged to speed computations for network analytics purposes by orders of magnitude. First, using publicly available data, we show that informational networks not only satisfy well-known principles such as the small-world property and variants of the power law degree distribution, but that they also exhibit the geometric property of large-scale negative curvature, also referred to as hyperbolicity. We then provide examples of large-scale physical networks that universally lack this property, thus showing that hyperbolicity is not an ever-present feature of real-life networks in general. We document how hyperbolicity leads to unusually high centrality in informational networks. We then describe an approximation of hyperbolic networks that leverages the observed property of high centrality. We provide evidence that the fidelity of the proposed approximation is not only high for applications such as distance approximation, but that it can speed computation by a factor of 1000X or more. Finally, we discuss two applications of our proposed linear-time distance approximation for informational networks: one for personalized ranking and the other for clustering. These and many more algorithms yet to be developed take full advantage of our proposed tree-approximation of hyperbolic networks and further demonstrate its power and utility.","PeriodicalId":55592,"journal":{"name":"Bell Labs Technical Journal","volume":"20 ","pages":"23-33"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15325/BLTJ.2015.2437465","citationCount":"3","resultStr":"{\"title\":\"Scalable Algorithms for Large and Dynamic Networks: Reducing Big Data for Small Computations\",\"authors\":\"Iraj Saniee\",\"doi\":\"10.15325/BLTJ.2015.2437465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we summarize recent research regarding a novel characterization of large-scale real-life informational networks which can be leveraged to speed computations for network analytics purposes by orders of magnitude. First, using publicly available data, we show that informational networks not only satisfy well-known principles such as the small-world property and variants of the power law degree distribution, but that they also exhibit the geometric property of large-scale negative curvature, also referred to as hyperbolicity. We then provide examples of large-scale physical networks that universally lack this property, thus showing that hyperbolicity is not an ever-present feature of real-life networks in general. We document how hyperbolicity leads to unusually high centrality in informational networks. We then describe an approximation of hyperbolic networks that leverages the observed property of high centrality. We provide evidence that the fidelity of the proposed approximation is not only high for applications such as distance approximation, but that it can speed computation by a factor of 1000X or more. Finally, we discuss two applications of our proposed linear-time distance approximation for informational networks: one for personalized ranking and the other for clustering. These and many more algorithms yet to be developed take full advantage of our proposed tree-approximation of hyperbolic networks and further demonstrate its power and utility.\",\"PeriodicalId\":55592,\"journal\":{\"name\":\"Bell Labs Technical Journal\",\"volume\":\"20 \",\"pages\":\"23-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15325/BLTJ.2015.2437465\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bell Labs Technical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/7137721/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bell Labs Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/7137721/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Scalable Algorithms for Large and Dynamic Networks: Reducing Big Data for Small Computations
In this paper we summarize recent research regarding a novel characterization of large-scale real-life informational networks which can be leveraged to speed computations for network analytics purposes by orders of magnitude. First, using publicly available data, we show that informational networks not only satisfy well-known principles such as the small-world property and variants of the power law degree distribution, but that they also exhibit the geometric property of large-scale negative curvature, also referred to as hyperbolicity. We then provide examples of large-scale physical networks that universally lack this property, thus showing that hyperbolicity is not an ever-present feature of real-life networks in general. We document how hyperbolicity leads to unusually high centrality in informational networks. We then describe an approximation of hyperbolic networks that leverages the observed property of high centrality. We provide evidence that the fidelity of the proposed approximation is not only high for applications such as distance approximation, but that it can speed computation by a factor of 1000X or more. Finally, we discuss two applications of our proposed linear-time distance approximation for informational networks: one for personalized ranking and the other for clustering. These and many more algorithms yet to be developed take full advantage of our proposed tree-approximation of hyperbolic networks and further demonstrate its power and utility.
期刊介绍:
The Bell Labs Technical Journal (BLTJ) highlights key research and development activities across Alcatel-Lucent — within Bell Labs, within the company’s CTO organizations, and in cross-functional projects and initiatives. It publishes papers and letters by Alcatel-Lucent researchers, scientists, and engineers and co-authors affiliated with universities, government and corporate research labs, and customer companies. Its aim is to promote progress in communications fields worldwide; Bell Labs innovations enable Alcatel-Lucent to deliver leading products, solutions, and services that meet customers’ mission critical needs.