符合MIL-STD-1399脉冲功率负载限制的储能型船用控制系统

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Giovanna Oriti;Alexander L. Julian;Matthew P. Storm;Daniel P. DeToma;Norma Anglani
{"title":"符合MIL-STD-1399脉冲功率负载限制的储能型船用控制系统","authors":"Giovanna Oriti;Alexander L. Julian;Matthew P. Storm;Daniel P. DeToma;Norma Anglani","doi":"10.1109/OJIA.2023.3307414","DOIUrl":null,"url":null,"abstract":"This article addresses the new pulsed power load requirements for shipboard power systems introduced in the 2018 revision of the Military Standard 1399 Section 300, Part 1. With the number of pulsed loads increasing onboard modern ships, the ac distribution bus is susceptible to voltage and frequency abnormalities due to the limited inertia of the synchronous generators powering the ship. In this article, the strict limits imposed by the Military Standard 1399 are met with a system-level solution and a novel sizing method for the energy storage system (ESS). A targeted control system ensures that the power delivered by the ac bus has smooth transients, within the limits set by the military standard, thus reducing the stress on the shipboard power distribution system and the generators. A novel ESS sizing algorithm is proposed to identify the minimum number of supercapacitors for a given set of control parameters. The proposed control system is simulated and experimentally validated on a laboratory testbed built with silicon carbide (SiC) power converters managed by field programmable gate array (FPGA) control boards.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"279-290"},"PeriodicalIF":7.9000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10226335.pdf","citationCount":"0","resultStr":"{\"title\":\"Shipboard Control System Supported by Energy Storage Sizing to Meet the MIL-STD-1399 Limits for Pulsed Power Loads\",\"authors\":\"Giovanna Oriti;Alexander L. Julian;Matthew P. Storm;Daniel P. DeToma;Norma Anglani\",\"doi\":\"10.1109/OJIA.2023.3307414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article addresses the new pulsed power load requirements for shipboard power systems introduced in the 2018 revision of the Military Standard 1399 Section 300, Part 1. With the number of pulsed loads increasing onboard modern ships, the ac distribution bus is susceptible to voltage and frequency abnormalities due to the limited inertia of the synchronous generators powering the ship. In this article, the strict limits imposed by the Military Standard 1399 are met with a system-level solution and a novel sizing method for the energy storage system (ESS). A targeted control system ensures that the power delivered by the ac bus has smooth transients, within the limits set by the military standard, thus reducing the stress on the shipboard power distribution system and the generators. A novel ESS sizing algorithm is proposed to identify the minimum number of supercapacitors for a given set of control parameters. The proposed control system is simulated and experimentally validated on a laboratory testbed built with silicon carbide (SiC) power converters managed by field programmable gate array (FPGA) control boards.\",\"PeriodicalId\":100629,\"journal\":{\"name\":\"IEEE Open Journal of Industry Applications\",\"volume\":\"4 \",\"pages\":\"279-290\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782707/10008994/10226335.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10226335/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10226335/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文阐述了2018年修订的军事标准1399第300节第1部分中引入的船用电力系统的新脉冲功率负载要求。随着现代船舶上脉冲负载数量的增加,由于为船舶供电的同步发电机惯性有限,交流配电母线容易受到电压和频率异常的影响。在本文中,通过系统级解决方案和储能系统(ESS)的新尺寸确定方法,满足了军事标准1399规定的严格限制。有针对性的控制系统确保交流总线输送的功率在军事标准设定的范围内具有平稳的瞬态,从而减少船上配电系统和发电机的应力。针对给定的一组控制参数,提出了一种新的ESS定径算法来识别超级电容器的最小数量。所提出的控制系统在实验室试验台上进行了模拟和实验验证,该试验台由现场可编程门阵列(FPGA)控制板管理的碳化硅(SiC)功率转换器构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shipboard Control System Supported by Energy Storage Sizing to Meet the MIL-STD-1399 Limits for Pulsed Power Loads
This article addresses the new pulsed power load requirements for shipboard power systems introduced in the 2018 revision of the Military Standard 1399 Section 300, Part 1. With the number of pulsed loads increasing onboard modern ships, the ac distribution bus is susceptible to voltage and frequency abnormalities due to the limited inertia of the synchronous generators powering the ship. In this article, the strict limits imposed by the Military Standard 1399 are met with a system-level solution and a novel sizing method for the energy storage system (ESS). A targeted control system ensures that the power delivered by the ac bus has smooth transients, within the limits set by the military standard, thus reducing the stress on the shipboard power distribution system and the generators. A novel ESS sizing algorithm is proposed to identify the minimum number of supercapacitors for a given set of control parameters. The proposed control system is simulated and experimentally validated on a laboratory testbed built with silicon carbide (SiC) power converters managed by field programmable gate array (FPGA) control boards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信