Laurent Schmalen;Adriaan J. de Lind van Wijngaarden;Stephan Ten Brink
{"title":"光核心和光接入网络中的前向纠错","authors":"Laurent Schmalen;Adriaan J. de Lind van Wijngaarden;Stephan Ten Brink","doi":"10.1002/bltj.21627","DOIUrl":null,"url":null,"abstract":"Forward error correction (FEC) techniques are essential for optical core and optical access networks. In optical core networks, the emphasis is on high coding gains and extremely low output bit error rates, while allowing decoder realizations to operate at a throughput of 100 Gb/s and above. Optical access networks operate at 10 Gb/s or above and require low-complexity FEC codes with low power consumption. Coherent optical transmission with higher order modulation formats will become mandatory to achieve the high spectral efficiencies required in next-generation core networks. In this paper, we provide an overview of these requirements and techniques, and highlight how coding and modulation can be best combined in optical core networks. We also present guidelines for modulation and low-complexity FEC system design for optical access networks.","PeriodicalId":55592,"journal":{"name":"Bell Labs Technical Journal","volume":"18 3","pages":"39-66"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/bltj.21627","citationCount":"29","resultStr":"{\"title\":\"Forward error correction in optical core and optical access networks\",\"authors\":\"Laurent Schmalen;Adriaan J. de Lind van Wijngaarden;Stephan Ten Brink\",\"doi\":\"10.1002/bltj.21627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forward error correction (FEC) techniques are essential for optical core and optical access networks. In optical core networks, the emphasis is on high coding gains and extremely low output bit error rates, while allowing decoder realizations to operate at a throughput of 100 Gb/s and above. Optical access networks operate at 10 Gb/s or above and require low-complexity FEC codes with low power consumption. Coherent optical transmission with higher order modulation formats will become mandatory to achieve the high spectral efficiencies required in next-generation core networks. In this paper, we provide an overview of these requirements and techniques, and highlight how coding and modulation can be best combined in optical core networks. We also present guidelines for modulation and low-complexity FEC system design for optical access networks.\",\"PeriodicalId\":55592,\"journal\":{\"name\":\"Bell Labs Technical Journal\",\"volume\":\"18 3\",\"pages\":\"39-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/bltj.21627\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bell Labs Technical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/6772724/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bell Labs Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/6772724/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Forward error correction in optical core and optical access networks
Forward error correction (FEC) techniques are essential for optical core and optical access networks. In optical core networks, the emphasis is on high coding gains and extremely low output bit error rates, while allowing decoder realizations to operate at a throughput of 100 Gb/s and above. Optical access networks operate at 10 Gb/s or above and require low-complexity FEC codes with low power consumption. Coherent optical transmission with higher order modulation formats will become mandatory to achieve the high spectral efficiencies required in next-generation core networks. In this paper, we provide an overview of these requirements and techniques, and highlight how coding and modulation can be best combined in optical core networks. We also present guidelines for modulation and low-complexity FEC system design for optical access networks.
期刊介绍:
The Bell Labs Technical Journal (BLTJ) highlights key research and development activities across Alcatel-Lucent — within Bell Labs, within the company’s CTO organizations, and in cross-functional projects and initiatives. It publishes papers and letters by Alcatel-Lucent researchers, scientists, and engineers and co-authors affiliated with universities, government and corporate research labs, and customer companies. Its aim is to promote progress in communications fields worldwide; Bell Labs innovations enable Alcatel-Lucent to deliver leading products, solutions, and services that meet customers’ mission critical needs.