Shovon Dey;Can Ni;Alberto Leon Cevallos;Raju Machupalli;Mrinal Mandal;Masum Hossain
{"title":"用于机器学习硬件的稀疏感知25 Gb/s内存链路,具有0.0375-pJ/bit的信号效率","authors":"Shovon Dey;Can Ni;Alberto Leon Cevallos;Raju Machupalli;Mrinal Mandal;Masum Hossain","doi":"10.1109/OJSSCS.2022.3213633","DOIUrl":null,"url":null,"abstract":"This work describes a multiplication and accumulation (MAC) accelerator integrated with a memory interface. The link is designed to take advantage of naturally existing sparsity in a neural network. The link operating at 16 Gb/s achieves 0.1875-pJ/bit signaling efficiency for random data but, for sparse data, signaling efficiency can improve to 0.0375 pJ/bit. Similarly, the MAC unit accelerates the computation utilizing the phase domain accumulation process and provides a 40% improvement in energy efficiency for sparse data and at the same achieves inference accuracy of 94% for the MNIST data set.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"2 ","pages":"276-287"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/9733783/09916077.pdf","citationCount":"0","resultStr":"{\"title\":\"Sparsity-Aware 25-Gb/s Memory Link With 0.0375-pJ/bit Signaling Efficiency for Machine Learning Hardware\",\"authors\":\"Shovon Dey;Can Ni;Alberto Leon Cevallos;Raju Machupalli;Mrinal Mandal;Masum Hossain\",\"doi\":\"10.1109/OJSSCS.2022.3213633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes a multiplication and accumulation (MAC) accelerator integrated with a memory interface. The link is designed to take advantage of naturally existing sparsity in a neural network. The link operating at 16 Gb/s achieves 0.1875-pJ/bit signaling efficiency for random data but, for sparse data, signaling efficiency can improve to 0.0375 pJ/bit. Similarly, the MAC unit accelerates the computation utilizing the phase domain accumulation process and provides a 40% improvement in energy efficiency for sparse data and at the same achieves inference accuracy of 94% for the MNIST data set.\",\"PeriodicalId\":100633,\"journal\":{\"name\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"volume\":\"2 \",\"pages\":\"276-287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782712/9733783/09916077.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9916077/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9916077/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sparsity-Aware 25-Gb/s Memory Link With 0.0375-pJ/bit Signaling Efficiency for Machine Learning Hardware
This work describes a multiplication and accumulation (MAC) accelerator integrated with a memory interface. The link is designed to take advantage of naturally existing sparsity in a neural network. The link operating at 16 Gb/s achieves 0.1875-pJ/bit signaling efficiency for random data but, for sparse data, signaling efficiency can improve to 0.0375 pJ/bit. Similarly, the MAC unit accelerates the computation utilizing the phase domain accumulation process and provides a 40% improvement in energy efficiency for sparse data and at the same achieves inference accuracy of 94% for the MNIST data set.