同步磁阻电机转矩脉动最小化控制策略

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Anant K Singh;Ramakrishnan Raja;Tomy Sebastian;Kaushik Rajashekara
{"title":"同步磁阻电机转矩脉动最小化控制策略","authors":"Anant K Singh;Ramakrishnan Raja;Tomy Sebastian;Kaushik Rajashekara","doi":"10.1109/OJIA.2022.3190905","DOIUrl":null,"url":null,"abstract":"Torque smoothness is an essential requirement for high-performance motor drive applications. Synchronous reluctance machines (SyRM) have high torque ripple due to non-linear magnetic circuit and saturation. Typically, in Permanent magnet machines the active torque ripple compensation is achieved by injecting a compensating ripple current in the \n<italic>q-axis</i>\n. For SyRM, the current injection method for active torque ripple cancellation can be used in both the \n<italic>d-axis</i>\n and \n<italic>q-axis</i>\n. However, the saturation of the motor parameters with the changing current can result in varied performance between the two methods. This paper evaluates the effectiveness of both of these methods for torque ripple cancellation. For evaluation, the impact of parameter saturation with ripple current injection on the \n<italic>d-axis</i>\n and the \n<italic>q-axis</i>\n is studied. The mathematical conclusions obtained are evaluated by both the simulation and the experimental results performed on a 4 pole 1200W Synchronous reluctance machine.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"141-151"},"PeriodicalIF":7.9000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09829907.pdf","citationCount":"1","resultStr":"{\"title\":\"Torque Ripple Minimization Control Strategy in Synchronous Reluctance Machines\",\"authors\":\"Anant K Singh;Ramakrishnan Raja;Tomy Sebastian;Kaushik Rajashekara\",\"doi\":\"10.1109/OJIA.2022.3190905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Torque smoothness is an essential requirement for high-performance motor drive applications. Synchronous reluctance machines (SyRM) have high torque ripple due to non-linear magnetic circuit and saturation. Typically, in Permanent magnet machines the active torque ripple compensation is achieved by injecting a compensating ripple current in the \\n<italic>q-axis</i>\\n. For SyRM, the current injection method for active torque ripple cancellation can be used in both the \\n<italic>d-axis</i>\\n and \\n<italic>q-axis</i>\\n. However, the saturation of the motor parameters with the changing current can result in varied performance between the two methods. This paper evaluates the effectiveness of both of these methods for torque ripple cancellation. For evaluation, the impact of parameter saturation with ripple current injection on the \\n<italic>d-axis</i>\\n and the \\n<italic>q-axis</i>\\n is studied. The mathematical conclusions obtained are evaluated by both the simulation and the experimental results performed on a 4 pole 1200W Synchronous reluctance machine.\",\"PeriodicalId\":100629,\"journal\":{\"name\":\"IEEE Open Journal of Industry Applications\",\"volume\":\"3 \",\"pages\":\"141-151\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782707/9666452/09829907.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9829907/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9829907/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

扭矩平滑度是高性能电机驱动应用的基本要求。同步磁阻电机(SyRM)由于非线性磁路和饱和而具有较高的转矩脉动。通常,在永磁电机中,通过在q轴中注入补偿纹波电流来实现主动转矩纹波补偿。对于SyRM,用于主动转矩纹波消除的电流注入方法可用于d轴和q轴。然而,电机参数随电流变化而饱和可能导致两种方法之间的性能变化。本文评估了这两种方法对转矩脉动消除的有效性。为了评估,研究了纹波电流注入对d轴和q轴参数饱和的影响。通过在四极1200W同步磁阻电机上进行的仿真和实验,对所得到的数学结论进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Torque Ripple Minimization Control Strategy in Synchronous Reluctance Machines
Torque smoothness is an essential requirement for high-performance motor drive applications. Synchronous reluctance machines (SyRM) have high torque ripple due to non-linear magnetic circuit and saturation. Typically, in Permanent magnet machines the active torque ripple compensation is achieved by injecting a compensating ripple current in the q-axis . For SyRM, the current injection method for active torque ripple cancellation can be used in both the d-axis and q-axis . However, the saturation of the motor parameters with the changing current can result in varied performance between the two methods. This paper evaluates the effectiveness of both of these methods for torque ripple cancellation. For evaluation, the impact of parameter saturation with ripple current injection on the d-axis and the q-axis is studied. The mathematical conclusions obtained are evaluated by both the simulation and the experimental results performed on a 4 pole 1200W Synchronous reluctance machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信