混合磁结构表面安装永磁电机的分析研究与启发式优化

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Bikrant Poudel;Ebrahim Amiri;Parviz Rastgoufard
{"title":"混合磁结构表面安装永磁电机的分析研究与启发式优化","authors":"Bikrant Poudel;Ebrahim Amiri;Parviz Rastgoufard","doi":"10.1109/OJIA.2022.3192313","DOIUrl":null,"url":null,"abstract":"Cogging torque causes major operational setbacks for Permanent Magnet (PM) machine operation, particularly in applications where a quiet performance is desired. This paper presents a heuristic optimization framework to optimize the cogging torque in Surface Mounted Permanent Magnet (SPM) machines consisting of a hybrid magnetic structure (i.e., rare-earth and ferrite magnets). To avoid excessive computational time and volume associated with Finite Element (FE)-based optimization solutions, analytical approach is paired up with the optimization algorithm to determine the optimal design while FE is utilized for verification and validation purposes. First, analytical expressions are established for individual objective functions (i.e., airgap PM flux distribution, and cogging torque), and their corresponding spatial harmonics are identified using the air-gap field modulation theory. Next, the presented analytical model is utilized to optimize the system (i.e., minimize the cogging torque) to the desired target level via two different solutions (i.e., Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)), and their respective performance are compared. To determine the efficacy of the presented solutions, the optimal hybrid machine response is compared against the baseline structure.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"152-163"},"PeriodicalIF":7.9000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09833259.pdf","citationCount":"2","resultStr":"{\"title\":\"Analytical Investigation and Heuristic Optimization of Surface Mounted Permanent Magnet Machines With Hybrid Magnetic Structure\",\"authors\":\"Bikrant Poudel;Ebrahim Amiri;Parviz Rastgoufard\",\"doi\":\"10.1109/OJIA.2022.3192313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cogging torque causes major operational setbacks for Permanent Magnet (PM) machine operation, particularly in applications where a quiet performance is desired. This paper presents a heuristic optimization framework to optimize the cogging torque in Surface Mounted Permanent Magnet (SPM) machines consisting of a hybrid magnetic structure (i.e., rare-earth and ferrite magnets). To avoid excessive computational time and volume associated with Finite Element (FE)-based optimization solutions, analytical approach is paired up with the optimization algorithm to determine the optimal design while FE is utilized for verification and validation purposes. First, analytical expressions are established for individual objective functions (i.e., airgap PM flux distribution, and cogging torque), and their corresponding spatial harmonics are identified using the air-gap field modulation theory. Next, the presented analytical model is utilized to optimize the system (i.e., minimize the cogging torque) to the desired target level via two different solutions (i.e., Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)), and their respective performance are compared. To determine the efficacy of the presented solutions, the optimal hybrid machine response is compared against the baseline structure.\",\"PeriodicalId\":100629,\"journal\":{\"name\":\"IEEE Open Journal of Industry Applications\",\"volume\":\"3 \",\"pages\":\"152-163\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782707/9666452/09833259.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9833259/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9833259/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

齿槽转矩会导致永磁体(PM)机器运行出现重大操作挫折,尤其是在需要安静性能的应用中。本文提出了一种启发式优化框架,用于优化由混合磁性结构(即稀土磁体和铁氧体磁体)组成的表面安装永磁体(SPM)机器的齿槽转矩。为了避免与基于有限元(FE)的优化解决方案相关的过多计算时间和体积,分析方法与优化算法相结合,以确定最佳设计,同时利用有限元进行验证和验证。首先,建立了各个目标函数(即气隙PM磁通分布和齿槽转矩)的解析表达式,并使用气隙场调制理论识别了它们对应的空间谐波。接下来,利用所提出的分析模型,通过两种不同的解决方案(即遗传算法(GA)和粒子群优化(PSO))将系统优化(即最小化齿槽转矩)到期望的目标水平,并比较了它们各自的性能。为了确定所提出的解决方案的有效性,将最佳混合动力机器响应与基线结构进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Investigation and Heuristic Optimization of Surface Mounted Permanent Magnet Machines With Hybrid Magnetic Structure
Cogging torque causes major operational setbacks for Permanent Magnet (PM) machine operation, particularly in applications where a quiet performance is desired. This paper presents a heuristic optimization framework to optimize the cogging torque in Surface Mounted Permanent Magnet (SPM) machines consisting of a hybrid magnetic structure (i.e., rare-earth and ferrite magnets). To avoid excessive computational time and volume associated with Finite Element (FE)-based optimization solutions, analytical approach is paired up with the optimization algorithm to determine the optimal design while FE is utilized for verification and validation purposes. First, analytical expressions are established for individual objective functions (i.e., airgap PM flux distribution, and cogging torque), and their corresponding spatial harmonics are identified using the air-gap field modulation theory. Next, the presented analytical model is utilized to optimize the system (i.e., minimize the cogging torque) to the desired target level via two different solutions (i.e., Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)), and their respective performance are compared. To determine the efficacy of the presented solutions, the optimal hybrid machine response is compared against the baseline structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信