不同气候条件下弹性独立混合微电网的设计与优化策略

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Norma Anglani;Giovanna Oriti;Ruth Fish;Douglas L. Van Bossuyt
{"title":"不同气候条件下弹性独立混合微电网的设计与优化策略","authors":"Norma Anglani;Giovanna Oriti;Ruth Fish;Douglas L. Van Bossuyt","doi":"10.1109/OJIA.2022.3201161","DOIUrl":null,"url":null,"abstract":"This paper presents an original two-steps methodology to size DERs (Distributed Energy Resources) in stand-alone microgrids, to be installed in different areas, featuring different meteorological conditions, but same kind of loads. Design examples are simulated to analyze how an increased level of resilience, considered in terms of number of days of autonomy after an initial incident, affects the sizing of a PV field and its storage. A practical tool to support strategic choices is methodologically illustrated and applied to two case studies to find the best configuration, which is identified by a trade-off among fuel consumption, sizes of PV arrays and resilience. Key design parameters help in designing the best system according to the location, by focusing on the newly identified key performance indicator \n<inline-formula><tex-math>$NPV^{s}$</tex-math></inline-formula>\n, the simplified net present value of specific scenarios of interest, where a penalty is introduced to account for less than the ideal target of autonomy. The model-based design used to create the microgrid simulations is validated by experimental measurements on a test-bed hybrid microgrid.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"237-246"},"PeriodicalIF":7.9000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09865121.pdf","citationCount":"2","resultStr":"{\"title\":\"Design and Optimization Strategy to Size Resilient Stand-Alone Hybrid Microgrids in Various Climatic Conditions\",\"authors\":\"Norma Anglani;Giovanna Oriti;Ruth Fish;Douglas L. Van Bossuyt\",\"doi\":\"10.1109/OJIA.2022.3201161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an original two-steps methodology to size DERs (Distributed Energy Resources) in stand-alone microgrids, to be installed in different areas, featuring different meteorological conditions, but same kind of loads. Design examples are simulated to analyze how an increased level of resilience, considered in terms of number of days of autonomy after an initial incident, affects the sizing of a PV field and its storage. A practical tool to support strategic choices is methodologically illustrated and applied to two case studies to find the best configuration, which is identified by a trade-off among fuel consumption, sizes of PV arrays and resilience. Key design parameters help in designing the best system according to the location, by focusing on the newly identified key performance indicator \\n<inline-formula><tex-math>$NPV^{s}$</tex-math></inline-formula>\\n, the simplified net present value of specific scenarios of interest, where a penalty is introduced to account for less than the ideal target of autonomy. The model-based design used to create the microgrid simulations is validated by experimental measurements on a test-bed hybrid microgrid.\",\"PeriodicalId\":100629,\"journal\":{\"name\":\"IEEE Open Journal of Industry Applications\",\"volume\":\"3 \",\"pages\":\"237-246\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782707/9666452/09865121.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9865121/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9865121/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种在独立微电网中确定分布式能源规模的原始两步方法,该方法将安装在不同的地区,具有不同的气象条件,但负载类型相同。模拟设计示例,以分析从首次事故后的自主天数来看,弹性水平的提高如何影响光伏场的规模及其存储。对支持战略选择的实用工具进行了方法论说明,并将其应用于两个案例研究,以找到最佳配置,该配置通过燃料消耗、光伏阵列尺寸和弹性之间的权衡来确定。关键设计参数有助于根据位置设计最佳系统,方法是关注新确定的关键性能指标$NPV^{s}$,即感兴趣的特定场景的简化净现值,其中引入了惩罚,以说明低于理想的自主目标。用于创建微电网模拟的基于模型的设计通过在混合微电网试验台上的实验测量进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Optimization Strategy to Size Resilient Stand-Alone Hybrid Microgrids in Various Climatic Conditions
This paper presents an original two-steps methodology to size DERs (Distributed Energy Resources) in stand-alone microgrids, to be installed in different areas, featuring different meteorological conditions, but same kind of loads. Design examples are simulated to analyze how an increased level of resilience, considered in terms of number of days of autonomy after an initial incident, affects the sizing of a PV field and its storage. A practical tool to support strategic choices is methodologically illustrated and applied to two case studies to find the best configuration, which is identified by a trade-off among fuel consumption, sizes of PV arrays and resilience. Key design parameters help in designing the best system according to the location, by focusing on the newly identified key performance indicator $NPV^{s}$ , the simplified net present value of specific scenarios of interest, where a penalty is introduced to account for less than the ideal target of autonomy. The model-based design used to create the microgrid simulations is validated by experimental measurements on a test-bed hybrid microgrid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信