{"title":"连续统与离散初边值问题与爱因斯坦场方程","authors":"Olivier Sarbach, Manuel Tiglio","doi":"10.12942/lrr-2012-9","DOIUrl":null,"url":null,"abstract":"<p>Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein’s theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity.</p><p>The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein’s equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":26.3000,"publicationDate":"2012-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2012-9","citationCount":"108","resultStr":"{\"title\":\"Continuum and Discrete Initial-Boundary Value Problems and Einstein’s Field Equations\",\"authors\":\"Olivier Sarbach, Manuel Tiglio\",\"doi\":\"10.12942/lrr-2012-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein’s theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity.</p><p>The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein’s equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.</p>\",\"PeriodicalId\":686,\"journal\":{\"name\":\"Living Reviews in Relativity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":26.3000,\"publicationDate\":\"2012-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.12942/lrr-2012-9\",\"citationCount\":\"108\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Living Reviews in Relativity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.12942/lrr-2012-9\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Relativity","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.12942/lrr-2012-9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Continuum and Discrete Initial-Boundary Value Problems and Einstein’s Field Equations
Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein’s theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity.
The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein’s equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.
期刊介绍:
Living Reviews in Relativity is a peer-reviewed, platinum open-access journal that publishes reviews of research across all areas of relativity. Directed towards the scientific community at or above the graduate-student level, articles are solicited from leading authorities and provide critical assessments of current research. They offer annotated insights into key literature and describe available resources, maintaining an up-to-date suite of high-quality reviews, thus embodying the "living" aspect of the journal's title.
Serving as a valuable tool for the scientific community, Living Reviews in Relativity is often the first stop for researchers seeking information on current work in relativity. Written by experts, the reviews cite, explain, and assess the most relevant resources in a given field, evaluating existing work and suggesting areas for further research.
Attracting readers from the entire relativity community, the journal is useful for graduate students conducting literature surveys, researchers seeking the latest results in unfamiliar fields, and lecturers in need of information and visual materials for presentations at all levels.