{"title":"纯声波与复波场分离的各向异性VSP逆时偏移","authors":"Zhiming Ren, Zhefeng Wei, Chenghong Zhu","doi":"10.1007/s11200-022-0717-9","DOIUrl":null,"url":null,"abstract":"<div><p>Ignoring anisotropy characteristic of subsurface media may lead to misplaced images and low resolution of the target for the reverse-time migration (RTM). The mature anisotropic RTM methods are mainly based on the pseudoacoustic wave approximation. Although these schemes have high computational efficiency, most of pseudo-acoustic wave equations (PWEs) inevitably encounter SV-wave artifacts or instability for anisotropic modeling and imaging. To improve the anisotropic RTM quality, we develop a combination of optimal pure acoustic wave and complex wavefield separation to conduct anisotropic RTM for both surface and vertical seismic profiling (VSP) acquisition geometries. Among the proposed scheme, we derive an optimal pure acoustic wave dispersion relation, and solve the corresponding wave equation by incorporating finite-difference and Poisson solver. The modified equation can remove SV-wave artifacts and instability of PWEs. Wavefield separation approach can choose desired wavefield components along different directions to carry out the final imaging, which can effectively suppress low-frequency imaging noise. Moreover, the hybrid absorbing boundary condition is adopted to suppress artificial boundary reflections during wavefield extrapolation. Basic theory and modeling examples demonstrate that the developed schemes can generate RTM results with high accuracy.</p></div>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"66 3-4","pages":"145 - 161"},"PeriodicalIF":0.5000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic VSP reverse-time migration with optimal pure aeoustic wave and complex wavefield separation\",\"authors\":\"Zhiming Ren, Zhefeng Wei, Chenghong Zhu\",\"doi\":\"10.1007/s11200-022-0717-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ignoring anisotropy characteristic of subsurface media may lead to misplaced images and low resolution of the target for the reverse-time migration (RTM). The mature anisotropic RTM methods are mainly based on the pseudoacoustic wave approximation. Although these schemes have high computational efficiency, most of pseudo-acoustic wave equations (PWEs) inevitably encounter SV-wave artifacts or instability for anisotropic modeling and imaging. To improve the anisotropic RTM quality, we develop a combination of optimal pure acoustic wave and complex wavefield separation to conduct anisotropic RTM for both surface and vertical seismic profiling (VSP) acquisition geometries. Among the proposed scheme, we derive an optimal pure acoustic wave dispersion relation, and solve the corresponding wave equation by incorporating finite-difference and Poisson solver. The modified equation can remove SV-wave artifacts and instability of PWEs. Wavefield separation approach can choose desired wavefield components along different directions to carry out the final imaging, which can effectively suppress low-frequency imaging noise. Moreover, the hybrid absorbing boundary condition is adopted to suppress artificial boundary reflections during wavefield extrapolation. Basic theory and modeling examples demonstrate that the developed schemes can generate RTM results with high accuracy.</p></div>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":\"66 3-4\",\"pages\":\"145 - 161\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-022-0717-9\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-022-0717-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Anisotropic VSP reverse-time migration with optimal pure aeoustic wave and complex wavefield separation
Ignoring anisotropy characteristic of subsurface media may lead to misplaced images and low resolution of the target for the reverse-time migration (RTM). The mature anisotropic RTM methods are mainly based on the pseudoacoustic wave approximation. Although these schemes have high computational efficiency, most of pseudo-acoustic wave equations (PWEs) inevitably encounter SV-wave artifacts or instability for anisotropic modeling and imaging. To improve the anisotropic RTM quality, we develop a combination of optimal pure acoustic wave and complex wavefield separation to conduct anisotropic RTM for both surface and vertical seismic profiling (VSP) acquisition geometries. Among the proposed scheme, we derive an optimal pure acoustic wave dispersion relation, and solve the corresponding wave equation by incorporating finite-difference and Poisson solver. The modified equation can remove SV-wave artifacts and instability of PWEs. Wavefield separation approach can choose desired wavefield components along different directions to carry out the final imaging, which can effectively suppress low-frequency imaging noise. Moreover, the hybrid absorbing boundary condition is adopted to suppress artificial boundary reflections during wavefield extrapolation. Basic theory and modeling examples demonstrate that the developed schemes can generate RTM results with high accuracy.
期刊介绍:
Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.