{"title":"基于聚合物分散液晶膜的2D/3D可切换定向背光自动立体显示器","authors":"Haiyu Chen;Haowen Liang;Wei-Hung Lai;Cheng-Chang Li;Jiahui Wang;Jianying Zhou;Tsung-Hsien Lin;Iam Choon Khoo;Juntao Li","doi":"10.1109/JDT.2016.2613121","DOIUrl":null,"url":null,"abstract":"A 2D/3D switchable autostereoscopic display with spatial and sequential hybrid control (SSHC) using polymer dispersed liquid crystal (PDLC) films is studied. The light propagation in the SSHC system is simulated with a Monte Carlo ray-tracing method. Relationship between the 2D uniformity and anisotropy factor as well as mean free path is obtained by a series of simulation cases. The uniformity reaches over 85% in simulation. As well, a two-viewpoint prototype is built to give the experimental result. Measurements show that a highly transparent PDLC film can maintain the high-quality 3D performance while a strongly diffusive one can enhance the uniformity in 2D mode. By increasing the driving duty cycle of the backlight units, the issue of luminance attenuation in 2D mode can be addressed. Our technique offers a practical solution for 2D/3D switch in autostereoscopic displays.","PeriodicalId":15588,"journal":{"name":"Journal of Display Technology","volume":"12 12","pages":"1738-1744"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JDT.2016.2613121","citationCount":"9","resultStr":"{\"title\":\"A 2D/3D Switchable Directional-Backlight Autostereoscopic Display Using Polymer Dispersed Liquid Crystal Films\",\"authors\":\"Haiyu Chen;Haowen Liang;Wei-Hung Lai;Cheng-Chang Li;Jiahui Wang;Jianying Zhou;Tsung-Hsien Lin;Iam Choon Khoo;Juntao Li\",\"doi\":\"10.1109/JDT.2016.2613121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 2D/3D switchable autostereoscopic display with spatial and sequential hybrid control (SSHC) using polymer dispersed liquid crystal (PDLC) films is studied. The light propagation in the SSHC system is simulated with a Monte Carlo ray-tracing method. Relationship between the 2D uniformity and anisotropy factor as well as mean free path is obtained by a series of simulation cases. The uniformity reaches over 85% in simulation. As well, a two-viewpoint prototype is built to give the experimental result. Measurements show that a highly transparent PDLC film can maintain the high-quality 3D performance while a strongly diffusive one can enhance the uniformity in 2D mode. By increasing the driving duty cycle of the backlight units, the issue of luminance attenuation in 2D mode can be addressed. Our technique offers a practical solution for 2D/3D switch in autostereoscopic displays.\",\"PeriodicalId\":15588,\"journal\":{\"name\":\"Journal of Display Technology\",\"volume\":\"12 12\",\"pages\":\"1738-1744\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/JDT.2016.2613121\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Display Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/7575699/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Display Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/7575699/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Engineering","Score":null,"Total":0}
A 2D/3D Switchable Directional-Backlight Autostereoscopic Display Using Polymer Dispersed Liquid Crystal Films
A 2D/3D switchable autostereoscopic display with spatial and sequential hybrid control (SSHC) using polymer dispersed liquid crystal (PDLC) films is studied. The light propagation in the SSHC system is simulated with a Monte Carlo ray-tracing method. Relationship between the 2D uniformity and anisotropy factor as well as mean free path is obtained by a series of simulation cases. The uniformity reaches over 85% in simulation. As well, a two-viewpoint prototype is built to give the experimental result. Measurements show that a highly transparent PDLC film can maintain the high-quality 3D performance while a strongly diffusive one can enhance the uniformity in 2D mode. By increasing the driving duty cycle of the backlight units, the issue of luminance attenuation in 2D mode can be addressed. Our technique offers a practical solution for 2D/3D switch in autostereoscopic displays.
期刊介绍:
This publication covers the theory, material, design, fabrication, manufacturing and application of information displays and aspects of display technology that emphasize the progress in device engineering, design and simulation, materials, electronics, physics, and reliability aspects of displays and the application of displays. The Journal is sponsored by EDS, seven other IEEE societies (BT, CES, CPMT, IA, IM, PHO and SSC) and the Optical Society of America (OSA).