M. McLoughlin, V. Yousefi-Asli, S. Gray, G. Ciccarelli
{"title":"通过扩散界面气体层的爆轰传播","authors":"M. McLoughlin, V. Yousefi-Asli, S. Gray, G. Ciccarelli","doi":"10.1007/s00193-023-01128-3","DOIUrl":null,"url":null,"abstract":"<div><p>Detonation propagation in a stratified layer of combustible gas over an inert gas was investigated experimentally. The layer formed in a 12.7-mm-wide channel by opening a sliding door that initially separated a nitrogen-diluted stoichiometric hydrogen–oxygen mixture from argon, or nitrogen. As the lighter combustible gas layer spreads axially down the channel, diffusion across the interface produces a composition gradient across the layer height. A steady detonation wave, generated by deflagration-to-detonation transition in the driver section before the door location, was transmitted into the combustible layer. The axial distance the layer spreads and the amount of mass diffusion across the layer were controlled by the flame ignition delay time after the door opens. Schlieren video and soot foils were used to measure the extent of detonation propagation through the layer. It was shown that detonation propagation through the layer is self-limiting due to over-mixing at the layer leading edge. Three-dimensional numerical simulations, including viscous and multicomponent mass diffusion effects, predicted the composition distribution within the layer. The cell size distribution, calculated based on the theoretical ZND induction zone length, corresponding to the simulation composition distribution showed that a cell size gradient-based failure criterion successfully predicted the extent of propagation in the layer.\n</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-023-01128-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Detonation propagation through a diffuse-interface gas layer\",\"authors\":\"M. McLoughlin, V. Yousefi-Asli, S. Gray, G. Ciccarelli\",\"doi\":\"10.1007/s00193-023-01128-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Detonation propagation in a stratified layer of combustible gas over an inert gas was investigated experimentally. The layer formed in a 12.7-mm-wide channel by opening a sliding door that initially separated a nitrogen-diluted stoichiometric hydrogen–oxygen mixture from argon, or nitrogen. As the lighter combustible gas layer spreads axially down the channel, diffusion across the interface produces a composition gradient across the layer height. A steady detonation wave, generated by deflagration-to-detonation transition in the driver section before the door location, was transmitted into the combustible layer. The axial distance the layer spreads and the amount of mass diffusion across the layer were controlled by the flame ignition delay time after the door opens. Schlieren video and soot foils were used to measure the extent of detonation propagation through the layer. It was shown that detonation propagation through the layer is self-limiting due to over-mixing at the layer leading edge. Three-dimensional numerical simulations, including viscous and multicomponent mass diffusion effects, predicted the composition distribution within the layer. The cell size distribution, calculated based on the theoretical ZND induction zone length, corresponding to the simulation composition distribution showed that a cell size gradient-based failure criterion successfully predicted the extent of propagation in the layer.\\n</p></div>\",\"PeriodicalId\":775,\"journal\":{\"name\":\"Shock Waves\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00193-023-01128-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00193-023-01128-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-023-01128-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Detonation propagation through a diffuse-interface gas layer
Detonation propagation in a stratified layer of combustible gas over an inert gas was investigated experimentally. The layer formed in a 12.7-mm-wide channel by opening a sliding door that initially separated a nitrogen-diluted stoichiometric hydrogen–oxygen mixture from argon, or nitrogen. As the lighter combustible gas layer spreads axially down the channel, diffusion across the interface produces a composition gradient across the layer height. A steady detonation wave, generated by deflagration-to-detonation transition in the driver section before the door location, was transmitted into the combustible layer. The axial distance the layer spreads and the amount of mass diffusion across the layer were controlled by the flame ignition delay time after the door opens. Schlieren video and soot foils were used to measure the extent of detonation propagation through the layer. It was shown that detonation propagation through the layer is self-limiting due to over-mixing at the layer leading edge. Three-dimensional numerical simulations, including viscous and multicomponent mass diffusion effects, predicted the composition distribution within the layer. The cell size distribution, calculated based on the theoretical ZND induction zone length, corresponding to the simulation composition distribution showed that a cell size gradient-based failure criterion successfully predicted the extent of propagation in the layer.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.