Chengye Liao;Yarong Wang;Xuda Ding;Yi Ren;Xiaoming Duan;Jianping He
{"title":"使用多关节机器人模型的典型物理发动机性能比较","authors":"Chengye Liao;Yarong Wang;Xuda Ding;Yi Ren;Xiaoming Duan;Jianping He","doi":"10.1109/LRA.2023.3320019","DOIUrl":null,"url":null,"abstract":"Physics engines are essential components in simulating complex robotic systems. The accuracy and computational speed of these engines are crucial for reliable real-time simulation. This letter comprehensively evaluates the performance of five common physics engines, i.e., ODE, Bullet, DART, MuJoCo, and PhysX, and provides guidance on their suitability for different scenarios. Specifically, we conduct three experiments using complex multi-joint robot models to test the stability, accuracy, and friction effectiveness. Instead of using simple implicit shapes, we use complete robot models that better reflect real-world scenarios. In addition, we conduct experiments under the default most suitable simulation environment configuration for each physics engine. Our results show that MujoCo performs best in linear stability, PhysX in angular stability, MuJoCo in accuracy, and DART in friction simulations.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"8 11","pages":"7520-7526"},"PeriodicalIF":4.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Comparison of Typical Physics Engines Using Robot Models With Multiple Joints\",\"authors\":\"Chengye Liao;Yarong Wang;Xuda Ding;Yi Ren;Xiaoming Duan;Jianping He\",\"doi\":\"10.1109/LRA.2023.3320019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physics engines are essential components in simulating complex robotic systems. The accuracy and computational speed of these engines are crucial for reliable real-time simulation. This letter comprehensively evaluates the performance of five common physics engines, i.e., ODE, Bullet, DART, MuJoCo, and PhysX, and provides guidance on their suitability for different scenarios. Specifically, we conduct three experiments using complex multi-joint robot models to test the stability, accuracy, and friction effectiveness. Instead of using simple implicit shapes, we use complete robot models that better reflect real-world scenarios. In addition, we conduct experiments under the default most suitable simulation environment configuration for each physics engine. Our results show that MujoCo performs best in linear stability, PhysX in angular stability, MuJoCo in accuracy, and DART in friction simulations.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"8 11\",\"pages\":\"7520-7526\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10265175/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10265175/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Performance Comparison of Typical Physics Engines Using Robot Models With Multiple Joints
Physics engines are essential components in simulating complex robotic systems. The accuracy and computational speed of these engines are crucial for reliable real-time simulation. This letter comprehensively evaluates the performance of five common physics engines, i.e., ODE, Bullet, DART, MuJoCo, and PhysX, and provides guidance on their suitability for different scenarios. Specifically, we conduct three experiments using complex multi-joint robot models to test the stability, accuracy, and friction effectiveness. Instead of using simple implicit shapes, we use complete robot models that better reflect real-world scenarios. In addition, we conduct experiments under the default most suitable simulation environment configuration for each physics engine. Our results show that MujoCo performs best in linear stability, PhysX in angular stability, MuJoCo in accuracy, and DART in friction simulations.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.