Johnathan W. Adams;Louis Chen;Peter Serano;Ara Nazarian;Reinhold Ludwig;Sergey N. Makaroff
{"title":"2.4GHz辐射人体的小型化双反相位贴片天线","authors":"Johnathan W. Adams;Louis Chen;Peter Serano;Ara Nazarian;Reinhold Ludwig;Sergey N. Makaroff","doi":"10.1109/JERM.2023.3247959","DOIUrl":null,"url":null,"abstract":"An on-body antenna, comprised of two closely-spaced antiphase patch elements, for microwave imaging may provide enhanced signal penetration into the tissue. By further integrating a 180-degree on-chip power splitter with the dual antiphase patch antenna element, a low-profile miniaturized antenna, integrated into a single 18.5 mm × 10 mm × 1.6 mm circuit board assembly, is designed and evaluated both numerically and experimentally. This is the smallest on-body antenna known to the authors for the given frequency band. This linearly polarized antenna may potentially serve as a building block of a dense antenna array for prospective high-resolution microwave imaging. A 2.4 GHz band was chosen as the design target. The final antenna size was a compromise between the miniaturization, the SNR (Signal-to-Noise Ratio), and the targeted antenna bandwidth (2.3–2.5 GHz). The effect of surface waves (the secondary radiating components) was also factored in the design consideration, while maximizing the detected signals’ SNR.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Miniaturized Dual Antiphase Patch Antenna Radiating Into the Human Body at 2.4 GHz\",\"authors\":\"Johnathan W. Adams;Louis Chen;Peter Serano;Ara Nazarian;Reinhold Ludwig;Sergey N. Makaroff\",\"doi\":\"10.1109/JERM.2023.3247959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An on-body antenna, comprised of two closely-spaced antiphase patch elements, for microwave imaging may provide enhanced signal penetration into the tissue. By further integrating a 180-degree on-chip power splitter with the dual antiphase patch antenna element, a low-profile miniaturized antenna, integrated into a single 18.5 mm × 10 mm × 1.6 mm circuit board assembly, is designed and evaluated both numerically and experimentally. This is the smallest on-body antenna known to the authors for the given frequency band. This linearly polarized antenna may potentially serve as a building block of a dense antenna array for prospective high-resolution microwave imaging. A 2.4 GHz band was chosen as the design target. The final antenna size was a compromise between the miniaturization, the SNR (Signal-to-Noise Ratio), and the targeted antenna bandwidth (2.3–2.5 GHz). The effect of surface waves (the secondary radiating components) was also factored in the design consideration, while maximizing the detected signals’ SNR.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10058155/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10058155/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Miniaturized Dual Antiphase Patch Antenna Radiating Into the Human Body at 2.4 GHz
An on-body antenna, comprised of two closely-spaced antiphase patch elements, for microwave imaging may provide enhanced signal penetration into the tissue. By further integrating a 180-degree on-chip power splitter with the dual antiphase patch antenna element, a low-profile miniaturized antenna, integrated into a single 18.5 mm × 10 mm × 1.6 mm circuit board assembly, is designed and evaluated both numerically and experimentally. This is the smallest on-body antenna known to the authors for the given frequency band. This linearly polarized antenna may potentially serve as a building block of a dense antenna array for prospective high-resolution microwave imaging. A 2.4 GHz band was chosen as the design target. The final antenna size was a compromise between the miniaturization, the SNR (Signal-to-Noise Ratio), and the targeted antenna bandwidth (2.3–2.5 GHz). The effect of surface waves (the secondary radiating components) was also factored in the design consideration, while maximizing the detected signals’ SNR.