磁力,发电机作用和太阳-恒星的联系

IF 23 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Allan Sacha Brun, Matthew K. Browning
{"title":"磁力,发电机作用和太阳-恒星的联系","authors":"Allan Sacha Brun,&nbsp;Matthew K. Browning","doi":"10.1007/s41116-017-0007-8","DOIUrl":null,"url":null,"abstract":"<p>The Sun and other stars are magnetic: magnetism pervades their interiors and affects their evolution in a variety of ways. In the Sun, both the fields themselves and their influence on other phenomena can be uncovered in exquisite detail, but these observations sample only a moment in a single star’s life. By turning to observations of other stars, and to theory and simulation, we may infer other aspects of the magnetism—e.g., its dependence on stellar age, mass, or rotation rate—that would be invisible from close study of the Sun alone. Here, we review observations and theory of magnetism in the Sun and other stars, with a partial focus on the “Solar-stellar connection”: i.e., ways in which studies of other stars have influenced our understanding of the Sun and vice versa. We briefly review techniques by which magnetic fields can be measured (or their presence otherwise inferred) in stars, and then highlight some key observational findings uncovered by such measurements, focusing (in many cases) on those that offer particularly direct constraints on theories of how the fields are built and maintained. We turn then to a discussion of how the fields arise in different objects: first, we summarize some essential elements of convection and dynamo theory, including a very brief discussion of mean-field theory and related concepts. Next we turn to simulations of convection and magnetism in stellar interiors, highlighting both some peculiarities of field generation in different types of stars and some unifying physical processes that likely influence dynamo action in general. We conclude with a brief summary of what we have learned, and a sampling of issues that remain uncertain or unsolved.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"14 1","pages":""},"PeriodicalIF":23.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41116-017-0007-8","citationCount":"156","resultStr":"{\"title\":\"Magnetism, dynamo action and the solar-stellar connection\",\"authors\":\"Allan Sacha Brun,&nbsp;Matthew K. Browning\",\"doi\":\"10.1007/s41116-017-0007-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Sun and other stars are magnetic: magnetism pervades their interiors and affects their evolution in a variety of ways. In the Sun, both the fields themselves and their influence on other phenomena can be uncovered in exquisite detail, but these observations sample only a moment in a single star’s life. By turning to observations of other stars, and to theory and simulation, we may infer other aspects of the magnetism—e.g., its dependence on stellar age, mass, or rotation rate—that would be invisible from close study of the Sun alone. Here, we review observations and theory of magnetism in the Sun and other stars, with a partial focus on the “Solar-stellar connection”: i.e., ways in which studies of other stars have influenced our understanding of the Sun and vice versa. We briefly review techniques by which magnetic fields can be measured (or their presence otherwise inferred) in stars, and then highlight some key observational findings uncovered by such measurements, focusing (in many cases) on those that offer particularly direct constraints on theories of how the fields are built and maintained. We turn then to a discussion of how the fields arise in different objects: first, we summarize some essential elements of convection and dynamo theory, including a very brief discussion of mean-field theory and related concepts. Next we turn to simulations of convection and magnetism in stellar interiors, highlighting both some peculiarities of field generation in different types of stars and some unifying physical processes that likely influence dynamo action in general. We conclude with a brief summary of what we have learned, and a sampling of issues that remain uncertain or unsolved.</p>\",\"PeriodicalId\":687,\"journal\":{\"name\":\"Living Reviews in Solar Physics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":23.0000,\"publicationDate\":\"2017-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41116-017-0007-8\",\"citationCount\":\"156\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Living Reviews in Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41116-017-0007-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s41116-017-0007-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 156

摘要

太阳和其他恒星都是磁性的:磁性遍布它们的内部,并以各种方式影响它们的演化。在太阳中,磁场本身以及它们对其他现象的影响都可以被详尽地揭示出来,但这些观测只是对一颗恒星生命中的瞬间进行了采样。通过对其他恒星的观测,以及理论和模拟,我们可以推断出磁场的其他方面。比如,它依赖于恒星的年龄、质量或自转速度——如果只仔细研究太阳,这些都是看不见的。在这里,我们回顾了太阳和其他恒星的磁性观测和理论,部分关注“太阳-恒星联系”:即,其他恒星的研究影响了我们对太阳的理解,反之亦然。我们简要回顾了在恒星中测量磁场(或以其他方式推断磁场存在)的技术,然后重点介绍了这些测量发现的一些关键观测结果,重点关注(在许多情况下)那些对磁场如何形成和维持的理论提供特别直接约束的技术。然后我们转向讨论场是如何在不同的对象中产生的:首先,我们总结了对流和发电机理论的一些基本要素,包括对平均场理论和相关概念的非常简短的讨论。接下来,我们转向对恒星内部的对流和磁性的模拟,强调在不同类型的恒星中磁场产生的一些特性和一些可能影响发电机作用的统一物理过程。最后,我们简要总结了我们所学到的知识,并列举了一些仍不确定或未解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetism, dynamo action and the solar-stellar connection

Magnetism, dynamo action and the solar-stellar connection

The Sun and other stars are magnetic: magnetism pervades their interiors and affects their evolution in a variety of ways. In the Sun, both the fields themselves and their influence on other phenomena can be uncovered in exquisite detail, but these observations sample only a moment in a single star’s life. By turning to observations of other stars, and to theory and simulation, we may infer other aspects of the magnetism—e.g., its dependence on stellar age, mass, or rotation rate—that would be invisible from close study of the Sun alone. Here, we review observations and theory of magnetism in the Sun and other stars, with a partial focus on the “Solar-stellar connection”: i.e., ways in which studies of other stars have influenced our understanding of the Sun and vice versa. We briefly review techniques by which magnetic fields can be measured (or their presence otherwise inferred) in stars, and then highlight some key observational findings uncovered by such measurements, focusing (in many cases) on those that offer particularly direct constraints on theories of how the fields are built and maintained. We turn then to a discussion of how the fields arise in different objects: first, we summarize some essential elements of convection and dynamo theory, including a very brief discussion of mean-field theory and related concepts. Next we turn to simulations of convection and magnetism in stellar interiors, highlighting both some peculiarities of field generation in different types of stars and some unifying physical processes that likely influence dynamo action in general. We conclude with a brief summary of what we have learned, and a sampling of issues that remain uncertain or unsolved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Living Reviews in Solar Physics
Living Reviews in Solar Physics Earth and Planetary Sciences-Space and Planetary Science
CiteScore
41.90
自引率
1.40%
发文量
3
审稿时长
20 weeks
期刊介绍: Living Reviews in Solar Physics is a peer-reviewed, full open access, and exclusively online journal, publishing freely available reviews of research in all areas of solar and heliospheric physics. Articles are solicited from leading authorities and are directed towards the scientific community at or above the graduate-student level. The articles in Living Reviews provide critical reviews of the current state of research in the fields they cover. They evaluate existing work, place it in a meaningful context, and suggest areas where more work and new results are needed. Articles also offer annotated insights into the key literature and describe other available resources. Living Reviews is unique in maintaining a suite of high-quality reviews, which are kept up-to-date by the authors. This is the meaning of the word "living" in the journal''s title.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信