Pierre Celestin Ndayisaba , Shem Kuyah , Charles Aura Odhiambo Midega , Peter Njoroge Mwangi , Zeyaur Rahman Khan
{"title":"推拉技术增强了应对气候变化的能力,防止了土地退化:肯尼亚西部采用者的看法","authors":"Pierre Celestin Ndayisaba , Shem Kuyah , Charles Aura Odhiambo Midega , Peter Njoroge Mwangi , Zeyaur Rahman Khan","doi":"10.1016/j.farsys.2023.100020","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change and land degradation adversely affect food security in sub-Saharan Africa (SSA). Smallholder farmers are the most affected. Therefore, it is imperative to identify technologies that boost resilience to climate change, and restore lands. Push-pull technology is among proposed solutions. This technology controls stem borers, fall armyworm, striga, mycotoxins; improves availability of nitrogen and phosphorus, and stores increased carbon in biomass and soils. Though much has been published about push-pull technology, there is a lean in publications about how this technology can help smallholder farmers to cope with climate change and variability. Here, we present perceptions of adopters of push-pull technology in western Kenya with regard to climate change and land degradation, and discuss reasons it should be adopted widely. We compared push-pull and other maize-based cropping systems in western Kenya, through interviews. Push-pull technology produces 0.3–1.1 t more maize ha<sup>−1</sup> compared to maize-bean intercrop, and maize monocrop when the season is drier than normal. Additionally, push-pull provides 3.6–9.8 t more fodder during drought-stricken seasons. Push-pull technology covers 70% of the soil surface compared to 20% cover found in maize-bean intercrop and maize monocrop. In push-pull farms, 150–280 kg nitrogen, 13–24 kg phosphorus and 370–470 kg potassium can be recycled through biomass and this is five times greater than the potential for maize-bean intercrop and maize monocrop. There is need for wide adoption of push-pull technology to increase resilience of farmers to climate change and restore degraded lands.</p></div>","PeriodicalId":100522,"journal":{"name":"Farming System","volume":"1 2","pages":"Article 100020"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Push-pull technology enhances resilience to climate change and prevents land degradation: Perceptions of adopters in western Kenya\",\"authors\":\"Pierre Celestin Ndayisaba , Shem Kuyah , Charles Aura Odhiambo Midega , Peter Njoroge Mwangi , Zeyaur Rahman Khan\",\"doi\":\"10.1016/j.farsys.2023.100020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Climate change and land degradation adversely affect food security in sub-Saharan Africa (SSA). Smallholder farmers are the most affected. Therefore, it is imperative to identify technologies that boost resilience to climate change, and restore lands. Push-pull technology is among proposed solutions. This technology controls stem borers, fall armyworm, striga, mycotoxins; improves availability of nitrogen and phosphorus, and stores increased carbon in biomass and soils. Though much has been published about push-pull technology, there is a lean in publications about how this technology can help smallholder farmers to cope with climate change and variability. Here, we present perceptions of adopters of push-pull technology in western Kenya with regard to climate change and land degradation, and discuss reasons it should be adopted widely. We compared push-pull and other maize-based cropping systems in western Kenya, through interviews. Push-pull technology produces 0.3–1.1 t more maize ha<sup>−1</sup> compared to maize-bean intercrop, and maize monocrop when the season is drier than normal. Additionally, push-pull provides 3.6–9.8 t more fodder during drought-stricken seasons. Push-pull technology covers 70% of the soil surface compared to 20% cover found in maize-bean intercrop and maize monocrop. In push-pull farms, 150–280 kg nitrogen, 13–24 kg phosphorus and 370–470 kg potassium can be recycled through biomass and this is five times greater than the potential for maize-bean intercrop and maize monocrop. There is need for wide adoption of push-pull technology to increase resilience of farmers to climate change and restore degraded lands.</p></div>\",\"PeriodicalId\":100522,\"journal\":{\"name\":\"Farming System\",\"volume\":\"1 2\",\"pages\":\"Article 100020\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Farming System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949911923000205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Farming System","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949911923000205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Push-pull technology enhances resilience to climate change and prevents land degradation: Perceptions of adopters in western Kenya
Climate change and land degradation adversely affect food security in sub-Saharan Africa (SSA). Smallholder farmers are the most affected. Therefore, it is imperative to identify technologies that boost resilience to climate change, and restore lands. Push-pull technology is among proposed solutions. This technology controls stem borers, fall armyworm, striga, mycotoxins; improves availability of nitrogen and phosphorus, and stores increased carbon in biomass and soils. Though much has been published about push-pull technology, there is a lean in publications about how this technology can help smallholder farmers to cope with climate change and variability. Here, we present perceptions of adopters of push-pull technology in western Kenya with regard to climate change and land degradation, and discuss reasons it should be adopted widely. We compared push-pull and other maize-based cropping systems in western Kenya, through interviews. Push-pull technology produces 0.3–1.1 t more maize ha−1 compared to maize-bean intercrop, and maize monocrop when the season is drier than normal. Additionally, push-pull provides 3.6–9.8 t more fodder during drought-stricken seasons. Push-pull technology covers 70% of the soil surface compared to 20% cover found in maize-bean intercrop and maize monocrop. In push-pull farms, 150–280 kg nitrogen, 13–24 kg phosphorus and 370–470 kg potassium can be recycled through biomass and this is five times greater than the potential for maize-bean intercrop and maize monocrop. There is need for wide adoption of push-pull technology to increase resilience of farmers to climate change and restore degraded lands.