离子热电材料明胶-CF3SO3K–CH3SO3K中阴离子纠缠诱导的巨大热电能

IF 42.9 Q1 ELECTROCHEMISTRY
Qikai Li , Cheng-Gong Han , Shuaihua Wang , Cai-Chao Ye , Xinbo Zhang , Xiao Ma , Tao Feng , Yuchen Li , Weishu Liu
{"title":"离子热电材料明胶-CF3SO3K–CH3SO3K中阴离子纠缠诱导的巨大热电能","authors":"Qikai Li ,&nbsp;Cheng-Gong Han ,&nbsp;Shuaihua Wang ,&nbsp;Cai-Chao Ye ,&nbsp;Xinbo Zhang ,&nbsp;Xiao Ma ,&nbsp;Tao Feng ,&nbsp;Yuchen Li ,&nbsp;Weishu Liu","doi":"10.1016/j.esci.2023.100169","DOIUrl":null,"url":null,"abstract":"<div><p>Ionic thermoelectric (i-TE) technologies can power Internet of Things (IoT) sensors by harvesting thermal energy from the environment because of their large thermopowers. Present research focuses mostly on using the interactions between ions and matrices to enhance i-TE performance, but i-TE materials can benefit from utilizing different methods to control ion transport. Here, we introduced a new strategy that employs an ion entanglement effect. A giant thermopower of 28 ​mV ​K<sup>−1</sup> was obtained in a quasi-solid-state i-TE Gelatin-CF<sub>3</sub>SO<sub>3</sub>K–CH<sub>3</sub>SO<sub>3</sub>K gel via entanglement between <span><math><mrow><msup><msub><mrow><msub><mrow><mi>C</mi><mi>F</mi></mrow><mn>3</mn></msub><mi>S</mi><mi>O</mi></mrow><mn>3</mn></msub><mo>−</mo></msup></mrow></math></span> and <span><math><mrow><msup><msub><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mn>3</mn></msub><mi>S</mi><mi>O</mi></mrow><mn>3</mn></msub><mo>−</mo></msup></mrow></math></span> anions. The anionic entanglement effect involves complex interactions between these two anions, slowing anionic thermodiffusion and thus suppressing bipolar effects and boosting p-type thermopower. A Au@Cu | Gelatin-CF<sub>3</sub>SO<sub>3</sub>K–CH<sub>3</sub>SO<sub>3</sub>K | Au@Cu i-TE device with a generator mode delivers a specific output energy density of 67.2 ​mJ ​m<sup>−2</sup> K<sup>−2</sup> during 2 ​h of discharging. Long-term operation of the i-TE generator for 10 days shows that the harvested energy density offers an average of 2 ​J ​m<sup>−2</sup> per day in a cyclic working-reactivation model at a temperature difference of 6 ​K. The results demonstrate that anionic entanglement is an effective strategy for achieving giant thermopower with i-TE gels, so they have excellent potential for powering IoT sensors.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 5","pages":"Article 100169"},"PeriodicalIF":42.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anionic entanglement-induced giant thermopower in ionic thermoelectric material Gelatin-CF3SO3K–CH3SO3K\",\"authors\":\"Qikai Li ,&nbsp;Cheng-Gong Han ,&nbsp;Shuaihua Wang ,&nbsp;Cai-Chao Ye ,&nbsp;Xinbo Zhang ,&nbsp;Xiao Ma ,&nbsp;Tao Feng ,&nbsp;Yuchen Li ,&nbsp;Weishu Liu\",\"doi\":\"10.1016/j.esci.2023.100169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ionic thermoelectric (i-TE) technologies can power Internet of Things (IoT) sensors by harvesting thermal energy from the environment because of their large thermopowers. Present research focuses mostly on using the interactions between ions and matrices to enhance i-TE performance, but i-TE materials can benefit from utilizing different methods to control ion transport. Here, we introduced a new strategy that employs an ion entanglement effect. A giant thermopower of 28 ​mV ​K<sup>−1</sup> was obtained in a quasi-solid-state i-TE Gelatin-CF<sub>3</sub>SO<sub>3</sub>K–CH<sub>3</sub>SO<sub>3</sub>K gel via entanglement between <span><math><mrow><msup><msub><mrow><msub><mrow><mi>C</mi><mi>F</mi></mrow><mn>3</mn></msub><mi>S</mi><mi>O</mi></mrow><mn>3</mn></msub><mo>−</mo></msup></mrow></math></span> and <span><math><mrow><msup><msub><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mn>3</mn></msub><mi>S</mi><mi>O</mi></mrow><mn>3</mn></msub><mo>−</mo></msup></mrow></math></span> anions. The anionic entanglement effect involves complex interactions between these two anions, slowing anionic thermodiffusion and thus suppressing bipolar effects and boosting p-type thermopower. A Au@Cu | Gelatin-CF<sub>3</sub>SO<sub>3</sub>K–CH<sub>3</sub>SO<sub>3</sub>K | Au@Cu i-TE device with a generator mode delivers a specific output energy density of 67.2 ​mJ ​m<sup>−2</sup> K<sup>−2</sup> during 2 ​h of discharging. Long-term operation of the i-TE generator for 10 days shows that the harvested energy density offers an average of 2 ​J ​m<sup>−2</sup> per day in a cyclic working-reactivation model at a temperature difference of 6 ​K. The results demonstrate that anionic entanglement is an effective strategy for achieving giant thermopower with i-TE gels, so they have excellent potential for powering IoT sensors.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"3 5\",\"pages\":\"Article 100169\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141723001076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

离子热电(i-TE)技术可以通过从环境中获取热能来为物联网(IoT)传感器供电,因为它们的热电能很大。目前的研究主要集中在利用离子和基质之间的相互作用来提高i-TE的性能,但i-TE材料可以从利用不同的方法来控制离子传输中受益。在这里,我们介绍了一种利用离子纠缠效应的新策略。一个巨大的28​mV​K−1是通过CF3SO3−和CH3SO3−阴离子之间的纠缠在准固态i-TE明胶-CF3SO3K–CH3SO3K凝胶中获得的。阴离子纠缠效应涉及这两种阴离子之间的复杂相互作用,减缓阴离子的热扩散,从而抑制双极效应并增强p型热电能。A.Au@Cu|明胶-CF3SO3K–CH3SO3K|Au@Cu具有发电机模式的i-TE设备可提供67.2的特定输出能量密度​mJ​m−2 K−2​h放电。i-TE发电机10天的长期运行表明,收获的能量密度平均为2​J​在温差为6的循环工作再激活模型中,每天m−2​K.研究结果表明,阴离子纠缠是用i-TE凝胶实现巨大热电能的有效策略,因此它们在为物联网传感器供电方面具有良好的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anionic entanglement-induced giant thermopower in ionic thermoelectric material Gelatin-CF3SO3K–CH3SO3K

Anionic entanglement-induced giant thermopower in ionic thermoelectric material Gelatin-CF3SO3K–CH3SO3K

Ionic thermoelectric (i-TE) technologies can power Internet of Things (IoT) sensors by harvesting thermal energy from the environment because of their large thermopowers. Present research focuses mostly on using the interactions between ions and matrices to enhance i-TE performance, but i-TE materials can benefit from utilizing different methods to control ion transport. Here, we introduced a new strategy that employs an ion entanglement effect. A giant thermopower of 28 ​mV ​K−1 was obtained in a quasi-solid-state i-TE Gelatin-CF3SO3K–CH3SO3K gel via entanglement between CF3SO3 and CH3SO3 anions. The anionic entanglement effect involves complex interactions between these two anions, slowing anionic thermodiffusion and thus suppressing bipolar effects and boosting p-type thermopower. A Au@Cu | Gelatin-CF3SO3K–CH3SO3K | Au@Cu i-TE device with a generator mode delivers a specific output energy density of 67.2 ​mJ ​m−2 K−2 during 2 ​h of discharging. Long-term operation of the i-TE generator for 10 days shows that the harvested energy density offers an average of 2 ​J ​m−2 per day in a cyclic working-reactivation model at a temperature difference of 6 ​K. The results demonstrate that anionic entanglement is an effective strategy for achieving giant thermopower with i-TE gels, so they have excellent potential for powering IoT sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信