Xiaohui Rong , Dongdong Xiao , Qinghao Li , Yaoshen Niu , Feixiang Ding , Xueyan Hou , Qiyu Wang , Juping Xu , Chenglong Zhao , Dong Zhou , Ruijuan Xiao , Xiqian Yu , Wen Yin , Lin Gu , Hong Li , Xuejie Huang , Liquan Chen , Yong-Sheng Hu
{"title":"Li/Cu双蜂窝中心促进可逆阴离子氧化还原反应","authors":"Xiaohui Rong , Dongdong Xiao , Qinghao Li , Yaoshen Niu , Feixiang Ding , Xueyan Hou , Qiyu Wang , Juping Xu , Chenglong Zhao , Dong Zhou , Ruijuan Xiao , Xiqian Yu , Wen Yin , Lin Gu , Hong Li , Xuejie Huang , Liquan Chen , Yong-Sheng Hu","doi":"10.1016/j.esci.2023.100159","DOIUrl":null,"url":null,"abstract":"<div><p>The anionic redox reaction (ARR) is a promising charge contributor to improve the reversible capacity of layered-oxide cathodes for Na-ion batteries; however, some practical bottlenecks still need to be eliminated, including a low capacity retention, large voltage hysteresis, and low rate capability. Herein, we proposed a high-Na content honeycomb-ordered cathode, P2–Na<sub>5/6</sub>[Li<sub>1/6</sub>Cu<sub>1/6</sub>Mn<sub>2/3</sub>]O<sub>2</sub> (P2-NLCMO), with combined cationic/anionic redox. Neutron powder diffraction and X-ray diffraction of P2-NLCMO suggested P2-type stacking with rarely found <em>P</em>6<sub>3</sub>22 symmetry. In addition, advanced spectroscopy techniques and density functional theory calculations confirmed the synergistic stabilizing relationship between the Li/Cu dual honeycomb centers, achieving fully active Cu<sup>3+</sup>/Cu<sup>2+</sup> redox and stabilized ARR with interactively suppressed local distortion. With a meticulously regulated charge/discharge protocol, both the cycling and rate capability of P2-NLCMO were significantly improved, demonstrating reasonable capacity and eliminating voltage hysteresis. Overall, this work contributes a well-defined layered oxide cathode with combined cationic/anionic redox towards rational designing advanced Na-ion batteries.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 5","pages":"Article 100159"},"PeriodicalIF":42.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting reversible anionic redox reaction with Li/Cu dual honeycomb centers\",\"authors\":\"Xiaohui Rong , Dongdong Xiao , Qinghao Li , Yaoshen Niu , Feixiang Ding , Xueyan Hou , Qiyu Wang , Juping Xu , Chenglong Zhao , Dong Zhou , Ruijuan Xiao , Xiqian Yu , Wen Yin , Lin Gu , Hong Li , Xuejie Huang , Liquan Chen , Yong-Sheng Hu\",\"doi\":\"10.1016/j.esci.2023.100159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The anionic redox reaction (ARR) is a promising charge contributor to improve the reversible capacity of layered-oxide cathodes for Na-ion batteries; however, some practical bottlenecks still need to be eliminated, including a low capacity retention, large voltage hysteresis, and low rate capability. Herein, we proposed a high-Na content honeycomb-ordered cathode, P2–Na<sub>5/6</sub>[Li<sub>1/6</sub>Cu<sub>1/6</sub>Mn<sub>2/3</sub>]O<sub>2</sub> (P2-NLCMO), with combined cationic/anionic redox. Neutron powder diffraction and X-ray diffraction of P2-NLCMO suggested P2-type stacking with rarely found <em>P</em>6<sub>3</sub>22 symmetry. In addition, advanced spectroscopy techniques and density functional theory calculations confirmed the synergistic stabilizing relationship between the Li/Cu dual honeycomb centers, achieving fully active Cu<sup>3+</sup>/Cu<sup>2+</sup> redox and stabilized ARR with interactively suppressed local distortion. With a meticulously regulated charge/discharge protocol, both the cycling and rate capability of P2-NLCMO were significantly improved, demonstrating reasonable capacity and eliminating voltage hysteresis. Overall, this work contributes a well-defined layered oxide cathode with combined cationic/anionic redox towards rational designing advanced Na-ion batteries.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"3 5\",\"pages\":\"Article 100159\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141723000903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Boosting reversible anionic redox reaction with Li/Cu dual honeycomb centers
The anionic redox reaction (ARR) is a promising charge contributor to improve the reversible capacity of layered-oxide cathodes for Na-ion batteries; however, some practical bottlenecks still need to be eliminated, including a low capacity retention, large voltage hysteresis, and low rate capability. Herein, we proposed a high-Na content honeycomb-ordered cathode, P2–Na5/6[Li1/6Cu1/6Mn2/3]O2 (P2-NLCMO), with combined cationic/anionic redox. Neutron powder diffraction and X-ray diffraction of P2-NLCMO suggested P2-type stacking with rarely found P6322 symmetry. In addition, advanced spectroscopy techniques and density functional theory calculations confirmed the synergistic stabilizing relationship between the Li/Cu dual honeycomb centers, achieving fully active Cu3+/Cu2+ redox and stabilized ARR with interactively suppressed local distortion. With a meticulously regulated charge/discharge protocol, both the cycling and rate capability of P2-NLCMO were significantly improved, demonstrating reasonable capacity and eliminating voltage hysteresis. Overall, this work contributes a well-defined layered oxide cathode with combined cationic/anionic redox towards rational designing advanced Na-ion batteries.