具有大覆盖数的均匀相交族

IF 1 3区 数学 Q1 MATHEMATICS
Peter Frankl , Andrey Kupavskii
{"title":"具有大覆盖数的均匀相交族","authors":"Peter Frankl ,&nbsp;Andrey Kupavskii","doi":"10.1016/j.ejc.2023.103747","DOIUrl":null,"url":null,"abstract":"<div><p>A family <span><math><mi>F</mi></math></span> has covering number <span><math><mi>τ</mi></math></span> if the size of the smallest set intersecting all sets from <span><math><mi>F</mi></math></span> is equal to <span><math><mi>τ</mi></math></span>. Let <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span> stand for the size of the largest intersecting family <span><math><mi>F</mi></math></span> of <span><math><mi>k</mi></math></span>-element subsets of <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></math></span> with covering number <span><math><mi>τ</mi></math></span>. It is a classical result of Erdős and Lovász that <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>≤</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span> for any <span><math><mi>n</mi></math></span>. In this short note, we explore the behavior of <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>&lt;</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> and large <span><math><mi>τ</mi></math></span>. The results are quite surprising: For example, we show that <span><span><span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow><mfenced><mrow><mtable><mtr><mtd><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mfenced><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mfenced><mo>,</mo><mspace></mspace></mtd><mtd><mtext>if </mtext><mi>n</mi><mo>=</mo><mrow><mo>⌊</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>⌋</mo></mrow><mtext> and </mtext></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><mi>τ</mi><mo>≤</mo><mi>k</mi><mo>−</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>4</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><mtext> as </mtext><mi>k</mi><mo>→</mo><mi>∞</mi></mtd></mtr><mtr><mtd><mo>&lt;</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>c</mi><msup><mrow><mi>k</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></msup><mfenced><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mfenced><mo>,</mo><mspace></mspace></mtd><mtd><mtext>if </mtext><mi>n</mi><mo>=</mo><mrow><mo>⌊</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>⌋</mo></mrow><mtext> and </mtext></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><mi>τ</mi><mo>&gt;</mo><mi>k</mi><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>k</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span></p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"113 ","pages":"Article 103747"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Uniform intersecting families with large covering number\",\"authors\":\"Peter Frankl ,&nbsp;Andrey Kupavskii\",\"doi\":\"10.1016/j.ejc.2023.103747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A family <span><math><mi>F</mi></math></span> has covering number <span><math><mi>τ</mi></math></span> if the size of the smallest set intersecting all sets from <span><math><mi>F</mi></math></span> is equal to <span><math><mi>τ</mi></math></span>. Let <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span> stand for the size of the largest intersecting family <span><math><mi>F</mi></math></span> of <span><math><mi>k</mi></math></span>-element subsets of <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></math></span> with covering number <span><math><mi>τ</mi></math></span>. It is a classical result of Erdős and Lovász that <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>≤</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span> for any <span><math><mi>n</mi></math></span>. In this short note, we explore the behavior of <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>&lt;</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> and large <span><math><mi>τ</mi></math></span>. The results are quite surprising: For example, we show that <span><span><span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow><mfenced><mrow><mtable><mtr><mtd><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mfenced><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mfenced><mo>,</mo><mspace></mspace></mtd><mtd><mtext>if </mtext><mi>n</mi><mo>=</mo><mrow><mo>⌊</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>⌋</mo></mrow><mtext> and </mtext></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><mi>τ</mi><mo>≤</mo><mi>k</mi><mo>−</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>4</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><mtext> as </mtext><mi>k</mi><mo>→</mo><mi>∞</mi></mtd></mtr><mtr><mtd><mo>&lt;</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>c</mi><msup><mrow><mi>k</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></msup><mfenced><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mfenced><mo>,</mo><mspace></mspace></mtd><mtd><mtext>if </mtext><mi>n</mi><mo>=</mo><mrow><mo>⌊</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>⌋</mo></mrow><mtext> and </mtext></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><mi>τ</mi><mo>&gt;</mo><mi>k</mi><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>k</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span></p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"113 \",\"pages\":\"Article 103747\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669823000641\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669823000641","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

如果与F的所有集合相交的最小集合的大小等于τ,则族F具有覆盖数τ。设M(n,k,τ)表示覆盖数为τ的{1,…,n}的k元素子集的最大相交族F的大小。对于任意n,M(n,k,k)≤kk是Erdõs和Lovász的经典结果;k2和大τ。结果非常令人惊讶:例如,我们证明了M(n,k,τ)=(1−o(1))n−1k−1,如果n=⌊k3/2⌋并且τ≤k−k3/4+o(1→∞<;e−ck1/2nk,如果n=⌊k3/2⌋且τ>;k−12k1/2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform intersecting families with large covering number

A family F has covering number τ if the size of the smallest set intersecting all sets from F is equal to τ. Let M(n,k,τ) stand for the size of the largest intersecting family F of k-element subsets of {1,,n} with covering number τ. It is a classical result of Erdős and Lovász that M(n,k,k)kk for any n. In this short note, we explore the behavior of M(n,k,τ) for n<k2 and large τ. The results are quite surprising: For example, we show that M(n,k,τ)=(1o(1))n1k1,if n=k3/2 and τkk3/4+o(1) as k<eck1/2nk,if n=k3/2 and τ>k12k1/2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信