Hadis Amiri , Bahare Shabanpour , Parastoo Pourashouri , Mahboobeh kashiri
{"title":"利用脂质体技术包封海洋生物活性化合物:储存过程中物理化学性质和氧化稳定性的评估","authors":"Hadis Amiri , Bahare Shabanpour , Parastoo Pourashouri , Mahboobeh kashiri","doi":"10.1016/j.foostr.2023.100308","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the encapsulation of fish protein hydrolysate (FPH), fish oil (FO), and shrimp lipid extract (SHE) was investigated; the prepared nanoliposomes were coated by different layers. Whey protein (WPC) and chitosan (CS) were applied as a mono/bilayer and composite. Physicochemical properties and oxidative stability of nanoliposomes were investigated during 0, 7, 14, and 21 days of storage at 4 °C. The average particle size in uncoated nanoliposomes was 141.3 nm and coating changed the particle size. At the end of storage, the zeta potential<span> of uncoated nanoliposomes was decreased from − 84.7 mV to − 64.8 mV; the color intensity of nanoliposomes showed a slight decrease. The nanoliposomes coated by WPC-monolayer showed the highest encapsulation efficiency (98.38%). At the first, the uncoated nanoliposomes containing SHE showed the highest DPPH radical scavenging activity (77.74%) and reducing power (1.42). Although, during this time, bilayer-coated nanoliposomes by WPC/CS revealed superior oxidative stability. In conclusion, the findings indicated that the encapsulation of marine bioactive compounds in liposomal carriers and coating by WPC as a mono/bilayer with chitosan could be a potential approach to application with antioxidant capability in food products.</span></p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"35 ","pages":"Article 100308"},"PeriodicalIF":5.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Encapsulation of marine bioactive compounds using liposome technique: Evaluation of physicochemical properties and oxidative stability during storage\",\"authors\":\"Hadis Amiri , Bahare Shabanpour , Parastoo Pourashouri , Mahboobeh kashiri\",\"doi\":\"10.1016/j.foostr.2023.100308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the encapsulation of fish protein hydrolysate (FPH), fish oil (FO), and shrimp lipid extract (SHE) was investigated; the prepared nanoliposomes were coated by different layers. Whey protein (WPC) and chitosan (CS) were applied as a mono/bilayer and composite. Physicochemical properties and oxidative stability of nanoliposomes were investigated during 0, 7, 14, and 21 days of storage at 4 °C. The average particle size in uncoated nanoliposomes was 141.3 nm and coating changed the particle size. At the end of storage, the zeta potential<span> of uncoated nanoliposomes was decreased from − 84.7 mV to − 64.8 mV; the color intensity of nanoliposomes showed a slight decrease. The nanoliposomes coated by WPC-monolayer showed the highest encapsulation efficiency (98.38%). At the first, the uncoated nanoliposomes containing SHE showed the highest DPPH radical scavenging activity (77.74%) and reducing power (1.42). Although, during this time, bilayer-coated nanoliposomes by WPC/CS revealed superior oxidative stability. In conclusion, the findings indicated that the encapsulation of marine bioactive compounds in liposomal carriers and coating by WPC as a mono/bilayer with chitosan could be a potential approach to application with antioxidant capability in food products.</span></p></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"35 \",\"pages\":\"Article 100308\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329123000011\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329123000011","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Encapsulation of marine bioactive compounds using liposome technique: Evaluation of physicochemical properties and oxidative stability during storage
In this study, the encapsulation of fish protein hydrolysate (FPH), fish oil (FO), and shrimp lipid extract (SHE) was investigated; the prepared nanoliposomes were coated by different layers. Whey protein (WPC) and chitosan (CS) were applied as a mono/bilayer and composite. Physicochemical properties and oxidative stability of nanoliposomes were investigated during 0, 7, 14, and 21 days of storage at 4 °C. The average particle size in uncoated nanoliposomes was 141.3 nm and coating changed the particle size. At the end of storage, the zeta potential of uncoated nanoliposomes was decreased from − 84.7 mV to − 64.8 mV; the color intensity of nanoliposomes showed a slight decrease. The nanoliposomes coated by WPC-monolayer showed the highest encapsulation efficiency (98.38%). At the first, the uncoated nanoliposomes containing SHE showed the highest DPPH radical scavenging activity (77.74%) and reducing power (1.42). Although, during this time, bilayer-coated nanoliposomes by WPC/CS revealed superior oxidative stability. In conclusion, the findings indicated that the encapsulation of marine bioactive compounds in liposomal carriers and coating by WPC as a mono/bilayer with chitosan could be a potential approach to application with antioxidant capability in food products.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.