{"title":"基于ConvNeXt的低照度场景下垃圾分类模型","authors":"Yibin Qiao, Qiang Zhang, Ying Qi, Teng Wan, Lixin Yang, Xin Yu","doi":"10.1016/j.resconrec.2023.107274","DOIUrl":null,"url":null,"abstract":"<div><p>Waste classification is an essential part of environmental pollution management in modern society. Object detection is an accurate and efficient way to classify waste, which is conducive to recycling resources. However, due to low object discriminability, existing waste classification models cannot classify waste in low-illumination scenes. A waste classification model, Dark-Waste, is designed to classify wastes in a low-illumination scenario. Firstly, to solve the scarcity of training data, an efficient and low-cost Illumination Conversion method is proposed to generate the low-light image. Secondly, the improved ConvNeXt network is combined with YOLOv5 to accurately and efficiently classify waste. Finally, we validated the model on a self-built dataset in real scenarios. The experimental results show that Dark-Waste achieves the best detection performance in low-illumination scenes. The Dark-Waste provides a new approach to waste management in complex environments and effectively contributes to the sustainable development of the urban ecological environment.</p></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"199 ","pages":"Article 107274"},"PeriodicalIF":11.2000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Waste Classification model in Low-illumination scenes based on ConvNeXt\",\"authors\":\"Yibin Qiao, Qiang Zhang, Ying Qi, Teng Wan, Lixin Yang, Xin Yu\",\"doi\":\"10.1016/j.resconrec.2023.107274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Waste classification is an essential part of environmental pollution management in modern society. Object detection is an accurate and efficient way to classify waste, which is conducive to recycling resources. However, due to low object discriminability, existing waste classification models cannot classify waste in low-illumination scenes. A waste classification model, Dark-Waste, is designed to classify wastes in a low-illumination scenario. Firstly, to solve the scarcity of training data, an efficient and low-cost Illumination Conversion method is proposed to generate the low-light image. Secondly, the improved ConvNeXt network is combined with YOLOv5 to accurately and efficiently classify waste. Finally, we validated the model on a self-built dataset in real scenarios. The experimental results show that Dark-Waste achieves the best detection performance in low-illumination scenes. The Dark-Waste provides a new approach to waste management in complex environments and effectively contributes to the sustainable development of the urban ecological environment.</p></div>\",\"PeriodicalId\":21153,\"journal\":{\"name\":\"Resources Conservation and Recycling\",\"volume\":\"199 \",\"pages\":\"Article 107274\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Conservation and Recycling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921344923004081\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344923004081","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
A Waste Classification model in Low-illumination scenes based on ConvNeXt
Waste classification is an essential part of environmental pollution management in modern society. Object detection is an accurate and efficient way to classify waste, which is conducive to recycling resources. However, due to low object discriminability, existing waste classification models cannot classify waste in low-illumination scenes. A waste classification model, Dark-Waste, is designed to classify wastes in a low-illumination scenario. Firstly, to solve the scarcity of training data, an efficient and low-cost Illumination Conversion method is proposed to generate the low-light image. Secondly, the improved ConvNeXt network is combined with YOLOv5 to accurately and efficiently classify waste. Finally, we validated the model on a self-built dataset in real scenarios. The experimental results show that Dark-Waste achieves the best detection performance in low-illumination scenes. The Dark-Waste provides a new approach to waste management in complex environments and effectively contributes to the sustainable development of the urban ecological environment.
期刊介绍:
The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns.
Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.