如何建造支柱:托马森猜想的证明

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Irene Gil Fernández , Hong Liu
{"title":"如何建造支柱:托马森猜想的证明","authors":"Irene Gil Fernández ,&nbsp;Hong Liu","doi":"10.1016/j.jctb.2023.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>Carsten Thomassen in 1989 conjectured that if a graph has minimum degree much more than the number of atoms in the universe (<span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><msup><mrow><mn>10</mn></mrow><mrow><msup><mrow><mn>10</mn></mrow><mrow><mn>10</mn></mrow></msup></mrow></msup></math></span>), then it contains a <em>pillar</em>, which is a graph that consists of two vertex-disjoint cycles of the same length, <em>s</em> say, along with <em>s</em> vertex-disjoint paths of the same length<span><sup>3</sup></span> which connect matching vertices in order around the cycles. Despite the simplicity of the structure of pillars and various developments of powerful embedding methods for paths and cycles in the past three decades, this innocent looking conjecture has seen no progress to date. In this paper, we give a proof of this conjecture by building a pillar (algorithmically) in sublinear expanders.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"How to build a pillar: A proof of Thomassen's conjecture\",\"authors\":\"Irene Gil Fernández ,&nbsp;Hong Liu\",\"doi\":\"10.1016/j.jctb.2023.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carsten Thomassen in 1989 conjectured that if a graph has minimum degree much more than the number of atoms in the universe (<span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><msup><mrow><mn>10</mn></mrow><mrow><msup><mrow><mn>10</mn></mrow><mrow><mn>10</mn></mrow></msup></mrow></msup></math></span>), then it contains a <em>pillar</em>, which is a graph that consists of two vertex-disjoint cycles of the same length, <em>s</em> say, along with <em>s</em> vertex-disjoint paths of the same length<span><sup>3</sup></span> which connect matching vertices in order around the cycles. Despite the simplicity of the structure of pillars and various developments of powerful embedding methods for paths and cycles in the past three decades, this innocent looking conjecture has seen no progress to date. In this paper, we give a proof of this conjecture by building a pillar (algorithmically) in sublinear expanders.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000321\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000321","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

Carsten Thomassen在1989年推测,如果一个图的最小度远大于宇宙中原子的数量(δ(G)≥101010),那么它包含一个柱,这是一个由两个相同长度的顶点不相交循环组成的图,例如,s,以及s个相同长度的顶点不交路径3,它们按循环周围的顺序连接匹配的顶点。尽管在过去的三十年里,支柱的结构很简单,路径和循环的强大嵌入方法也有了各种发展,但迄今为止,这个看起来天真无邪的猜想没有取得任何进展。在本文中,我们通过在次线性扩展器中建立一个支柱(算法)来证明这个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to build a pillar: A proof of Thomassen's conjecture

Carsten Thomassen in 1989 conjectured that if a graph has minimum degree much more than the number of atoms in the universe (δ(G)101010), then it contains a pillar, which is a graph that consists of two vertex-disjoint cycles of the same length, s say, along with s vertex-disjoint paths of the same length3 which connect matching vertices in order around the cycles. Despite the simplicity of the structure of pillars and various developments of powerful embedding methods for paths and cycles in the past three decades, this innocent looking conjecture has seen no progress to date. In this paper, we give a proof of this conjecture by building a pillar (algorithmically) in sublinear expanders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信