具有原位交联超薄壳聚糖层的TFC膜通过多种超分子相互作用实现高效的水/乙醇分离

Qing Xia , Tengyang Zhu , Zhengze Chai , Yan Wang
{"title":"具有原位交联超薄壳聚糖层的TFC膜通过多种超分子相互作用实现高效的水/乙醇分离","authors":"Qing Xia ,&nbsp;Tengyang Zhu ,&nbsp;Zhengze Chai ,&nbsp;Yan Wang","doi":"10.1016/j.advmem.2023.100062","DOIUrl":null,"url":null,"abstract":"<div><p>Chitosan (CS) membranes have been widely applied in water/ethanol separation <em>via</em> membrane-based pervaporation, but a bottleneck in the practical application always exists due to their severe swelling behavior in aqueous solution and consequently low permeation flux due to the large membrane thickness. Here, thin film composite (TFC) hollow fiber (HF) membrane with an in-situ-crosslinked ultrathin CS selective layer is developed via multiple supramolecular interaction-crosslinking strategy for efficient water/ethanol separation <em>via</em> pervaporation. With Fe<sup>3+</sup>-phytic acid (PhA) complex pre-deposited on the substrate, the subsequently introduced CS selective layer is in-situ crosslinked <em>via</em> multiple supramolecular interactions, including coordination, electrostatic, and hydrogen bonding interactions. By varying the cycle number of Fe<sup>3+</sup>/PhA assembly and the species of employed organophosphorus acid, the anti-swelling properties of the resultant TFC CS membrane is enhanced and the separation performance is maximized. The optimal TFC-CS-Fe<sub>2</sub>PhA<sub>2</sub> membrane with two cycles of Fe<sup>3+</sup>/PhA assembly has a selective layer thickness of 60 ​<em>n</em>m and a corresponding ultrahigh flux of 2.87 ​kg/m<sup>2</sup> h, coupled with a permeate water concentration of 99.5 ​wt% and good long-term stability for the dehydration of 85 ​wt% ethanol aqueous solution at 50 ​°C. The supramolecular interaction-crosslinking presented in this work provides an efficient and promising strategy for the construction of TFC CS membrane with excellent anti-swelling property and superior separation performance.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"3 ","pages":"Article 100062"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"TFC membrane with in-situ crosslinked ultrathin chitosan layer for efficient water/ethanol separation enabled by multiple supramolecular interactions\",\"authors\":\"Qing Xia ,&nbsp;Tengyang Zhu ,&nbsp;Zhengze Chai ,&nbsp;Yan Wang\",\"doi\":\"10.1016/j.advmem.2023.100062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chitosan (CS) membranes have been widely applied in water/ethanol separation <em>via</em> membrane-based pervaporation, but a bottleneck in the practical application always exists due to their severe swelling behavior in aqueous solution and consequently low permeation flux due to the large membrane thickness. Here, thin film composite (TFC) hollow fiber (HF) membrane with an in-situ-crosslinked ultrathin CS selective layer is developed via multiple supramolecular interaction-crosslinking strategy for efficient water/ethanol separation <em>via</em> pervaporation. With Fe<sup>3+</sup>-phytic acid (PhA) complex pre-deposited on the substrate, the subsequently introduced CS selective layer is in-situ crosslinked <em>via</em> multiple supramolecular interactions, including coordination, electrostatic, and hydrogen bonding interactions. By varying the cycle number of Fe<sup>3+</sup>/PhA assembly and the species of employed organophosphorus acid, the anti-swelling properties of the resultant TFC CS membrane is enhanced and the separation performance is maximized. The optimal TFC-CS-Fe<sub>2</sub>PhA<sub>2</sub> membrane with two cycles of Fe<sup>3+</sup>/PhA assembly has a selective layer thickness of 60 ​<em>n</em>m and a corresponding ultrahigh flux of 2.87 ​kg/m<sup>2</sup> h, coupled with a permeate water concentration of 99.5 ​wt% and good long-term stability for the dehydration of 85 ​wt% ethanol aqueous solution at 50 ​°C. The supramolecular interaction-crosslinking presented in this work provides an efficient and promising strategy for the construction of TFC CS membrane with excellent anti-swelling property and superior separation performance.</p></div>\",\"PeriodicalId\":100033,\"journal\":{\"name\":\"Advanced Membranes\",\"volume\":\"3 \",\"pages\":\"Article 100062\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Membranes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772823423000039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823423000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

壳聚糖(CS)膜已广泛应用于基于膜的渗透蒸发分离水/乙醇,但由于其在水溶液中的严重溶胀行为,以及由于膜厚度大而导致的低渗透通量,在实际应用中始终存在瓶颈。本文通过多种超分子相互作用交联策略,开发了具有原位交联超薄CS选择性层的薄膜复合材料(TFC)中空纤维(HF)膜,用于通过渗透蒸发有效分离水/乙醇。在基底上预沉积Fe3+-植酸(PhA)复合物后,随后引入的CS选择性层通过多种超分子相互作用原位交联,包括配位、静电和氢键相互作用。通过改变Fe3+/PhA组装的循环次数和所用有机磷酸的种类,提高了所得TFC CS膜的抗溶胀性能,并使分离性能最大化。具有两次Fe3+/PhA组装循环的最佳TFC-CS-Fe2PhA2膜具有60的选择性层厚度​nm和相应的2.87的超高通量​kg/m2小时,加上99.5的渗透水浓度​wt%和良好的长期稳定性用于85的脱水​50%乙醇水溶液​°C。本文提出的超分子相互作用交联为构建具有优异抗溶胀性能和优异分离性能的TFC-CS膜提供了一种有效而有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

TFC membrane with in-situ crosslinked ultrathin chitosan layer for efficient water/ethanol separation enabled by multiple supramolecular interactions

TFC membrane with in-situ crosslinked ultrathin chitosan layer for efficient water/ethanol separation enabled by multiple supramolecular interactions

Chitosan (CS) membranes have been widely applied in water/ethanol separation via membrane-based pervaporation, but a bottleneck in the practical application always exists due to their severe swelling behavior in aqueous solution and consequently low permeation flux due to the large membrane thickness. Here, thin film composite (TFC) hollow fiber (HF) membrane with an in-situ-crosslinked ultrathin CS selective layer is developed via multiple supramolecular interaction-crosslinking strategy for efficient water/ethanol separation via pervaporation. With Fe3+-phytic acid (PhA) complex pre-deposited on the substrate, the subsequently introduced CS selective layer is in-situ crosslinked via multiple supramolecular interactions, including coordination, electrostatic, and hydrogen bonding interactions. By varying the cycle number of Fe3+/PhA assembly and the species of employed organophosphorus acid, the anti-swelling properties of the resultant TFC CS membrane is enhanced and the separation performance is maximized. The optimal TFC-CS-Fe2PhA2 membrane with two cycles of Fe3+/PhA assembly has a selective layer thickness of 60 ​nm and a corresponding ultrahigh flux of 2.87 ​kg/m2 h, coupled with a permeate water concentration of 99.5 ​wt% and good long-term stability for the dehydration of 85 ​wt% ethanol aqueous solution at 50 ​°C. The supramolecular interaction-crosslinking presented in this work provides an efficient and promising strategy for the construction of TFC CS membrane with excellent anti-swelling property and superior separation performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信