FourierPIM:高吞吐量内存快速傅立叶变换和多项式乘法

Orian Leitersdorf, Yahav Boneh, Gonen Gazit, Ronny Ronen, Shahar Kvatinsky
{"title":"FourierPIM:高吞吐量内存快速傅立叶变换和多项式乘法","authors":"Orian Leitersdorf,&nbsp;Yahav Boneh,&nbsp;Gonen Gazit,&nbsp;Ronny Ronen,&nbsp;Shahar Kvatinsky","doi":"10.1016/j.memori.2023.100034","DOIUrl":null,"url":null,"abstract":"<div><p>The Discrete Fourier Transform (DFT) is essential for various applications ranging from signal processing to convolution and polynomial multiplication. The groundbreaking Fast Fourier Transform (FFT) algorithm reduces DFT time complexity from the naive <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, and recent works have sought further acceleration through parallel architectures such as GPUs. Unfortunately, accelerators such as GPUs cannot exploit their full computing capabilities since memory access becomes the bottleneck. Therefore, this paper accelerates the FFT algorithm using digital Processing-in-Memory (PIM) architectures that shift computation into the memory by exploiting physical devices capable of both storage and logic (e.g., memristors). We propose an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> in-memory FFT algorithm that can also be performed in parallel across multiple arrays for <em>high-throughput batched execution</em>, supporting both fixed-point and floating-point numbers. Through the convolution theorem, we extend this algorithm to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> polynomial multiplication – a fundamental task for applications such as cryptography. We evaluate FourierPIM on a publicly-available cycle-accurate simulator that verifies both correctness and performance, and demonstrate <span><math><mrow><mtext>5–15</mtext><mo>×</mo></mrow></math></span> throughput and <span><math><mrow><mtext>4–13</mtext><mo>×</mo></mrow></math></span> energy improvement over the NVIDIA cuFFT library on state-of-the-art GPUs for FFT and polynomial multiplication.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"4 ","pages":"Article 100034"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"FourierPIM: High-throughput in-memory Fast Fourier Transform and polynomial multiplication\",\"authors\":\"Orian Leitersdorf,&nbsp;Yahav Boneh,&nbsp;Gonen Gazit,&nbsp;Ronny Ronen,&nbsp;Shahar Kvatinsky\",\"doi\":\"10.1016/j.memori.2023.100034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Discrete Fourier Transform (DFT) is essential for various applications ranging from signal processing to convolution and polynomial multiplication. The groundbreaking Fast Fourier Transform (FFT) algorithm reduces DFT time complexity from the naive <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, and recent works have sought further acceleration through parallel architectures such as GPUs. Unfortunately, accelerators such as GPUs cannot exploit their full computing capabilities since memory access becomes the bottleneck. Therefore, this paper accelerates the FFT algorithm using digital Processing-in-Memory (PIM) architectures that shift computation into the memory by exploiting physical devices capable of both storage and logic (e.g., memristors). We propose an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> in-memory FFT algorithm that can also be performed in parallel across multiple arrays for <em>high-throughput batched execution</em>, supporting both fixed-point and floating-point numbers. Through the convolution theorem, we extend this algorithm to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> polynomial multiplication – a fundamental task for applications such as cryptography. We evaluate FourierPIM on a publicly-available cycle-accurate simulator that verifies both correctness and performance, and demonstrate <span><math><mrow><mtext>5–15</mtext><mo>×</mo></mrow></math></span> throughput and <span><math><mrow><mtext>4–13</mtext><mo>×</mo></mrow></math></span> energy improvement over the NVIDIA cuFFT library on state-of-the-art GPUs for FFT and polynomial multiplication.</p></div>\",\"PeriodicalId\":100915,\"journal\":{\"name\":\"Memories - Materials, Devices, Circuits and Systems\",\"volume\":\"4 \",\"pages\":\"Article 100034\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memories - Materials, Devices, Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773064623000117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064623000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

离散傅立叶变换(DFT)对于从信号处理到卷积和多项式乘法的各种应用是必不可少的。突破性的快速傅立叶变换(FFT)算法将DFT时间复杂性从最初的O(n2)降低到O(nlogn),最近的工作通过GPU等并行架构寻求进一步的加速。不幸的是,GPU等加速器无法充分利用其计算能力,因为内存访问成为瓶颈。因此,本文使用存储器中的数字处理(PIM)架构来加速FFT算法,该架构通过利用既能存储又能逻辑的物理设备(例如忆阻器)将计算转移到存储器中。我们提出了一种内存中的O(logn)FFT算法,该算法也可以在多个阵列之间并行执行,以实现高吞吐量的批处理执行,同时支持定点和浮点数。通过卷积定理,我们将该算法扩展到O(logn)多项式乘法——这是密码学等应用的基本任务。我们在一个公开可用的周期精确模拟器上评估了FourierPIM,该模拟器验证了正确性和性能,并在用于FFT和多项式乘法的最先进GPU上证明了与NVIDIA cuFFT库相比,吞吐量提高了5–15倍,能量提高了4–13倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FourierPIM: High-throughput in-memory Fast Fourier Transform and polynomial multiplication

The Discrete Fourier Transform (DFT) is essential for various applications ranging from signal processing to convolution and polynomial multiplication. The groundbreaking Fast Fourier Transform (FFT) algorithm reduces DFT time complexity from the naive O(n2) to O(nlogn), and recent works have sought further acceleration through parallel architectures such as GPUs. Unfortunately, accelerators such as GPUs cannot exploit their full computing capabilities since memory access becomes the bottleneck. Therefore, this paper accelerates the FFT algorithm using digital Processing-in-Memory (PIM) architectures that shift computation into the memory by exploiting physical devices capable of both storage and logic (e.g., memristors). We propose an O(logn) in-memory FFT algorithm that can also be performed in parallel across multiple arrays for high-throughput batched execution, supporting both fixed-point and floating-point numbers. Through the convolution theorem, we extend this algorithm to O(logn) polynomial multiplication – a fundamental task for applications such as cryptography. We evaluate FourierPIM on a publicly-available cycle-accurate simulator that verifies both correctness and performance, and demonstrate 5–15× throughput and 4–13× energy improvement over the NVIDIA cuFFT library on state-of-the-art GPUs for FFT and polynomial multiplication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信