环境条件下具有zeptogram分辨率的声子激光增强质量传感器

Chip Pub Date : 2023-09-01 DOI:10.1016/j.chip.2023.100050
Fei Pan , Kaiyu Cui , Yidong Huang , Ziming Chen , Ning Wu , Guoren Bai , Zhilei Huang , Xue Feng , Fang Liu , Wei Zhang
{"title":"环境条件下具有zeptogram分辨率的声子激光增强质量传感器","authors":"Fei Pan ,&nbsp;Kaiyu Cui ,&nbsp;Yidong Huang ,&nbsp;Ziming Chen ,&nbsp;Ning Wu ,&nbsp;Guoren Bai ,&nbsp;Zhilei Huang ,&nbsp;Xue Feng ,&nbsp;Fang Liu ,&nbsp;Wei Zhang","doi":"10.1016/j.chip.2023.100050","DOIUrl":null,"url":null,"abstract":"<div><p>High-sensitivity mass sensors under ambient conditions are essential in various fields such as biological research, gas sensing and environmental monitoring. In the current work, a phonon lasing enhanced mass sensor was proposed based on an optomechanical crystal cavity under ambient conditions. The phonon lasing was harnessed to achieve ultra-high resolution since it resulted in an extremely narrow mechanical linewidth (less than 10 kHz). Masses with different weights were deposited on the cavity, it is predicted that the maximum resolution for mass sensing can be 65 ± 19 zg, which approaches the mass order of a protein and an oligonucleotide. This implies the potential application of the proposed method in the biomedical fields such as oligonucleotide drug delivery area and the Human Proteome Project.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"2 3","pages":"Article 100050"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Phonon lasing enhanced mass sensor with zeptogram resolution under ambient conditions\",\"authors\":\"Fei Pan ,&nbsp;Kaiyu Cui ,&nbsp;Yidong Huang ,&nbsp;Ziming Chen ,&nbsp;Ning Wu ,&nbsp;Guoren Bai ,&nbsp;Zhilei Huang ,&nbsp;Xue Feng ,&nbsp;Fang Liu ,&nbsp;Wei Zhang\",\"doi\":\"10.1016/j.chip.2023.100050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-sensitivity mass sensors under ambient conditions are essential in various fields such as biological research, gas sensing and environmental monitoring. In the current work, a phonon lasing enhanced mass sensor was proposed based on an optomechanical crystal cavity under ambient conditions. The phonon lasing was harnessed to achieve ultra-high resolution since it resulted in an extremely narrow mechanical linewidth (less than 10 kHz). Masses with different weights were deposited on the cavity, it is predicted that the maximum resolution for mass sensing can be 65 ± 19 zg, which approaches the mass order of a protein and an oligonucleotide. This implies the potential application of the proposed method in the biomedical fields such as oligonucleotide drug delivery area and the Human Proteome Project.</p></div>\",\"PeriodicalId\":100244,\"journal\":{\"name\":\"Chip\",\"volume\":\"2 3\",\"pages\":\"Article 100050\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2709472323000138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472323000138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

环境条件下的高灵敏度质量传感器在生物研究、气体传感和环境监测等各个领域都是必不可少的。在当前的工作中,提出了一种在环境条件下基于光学机械晶体腔的声子激光增强质量传感器。声子激光被用来实现超高分辨率,因为它导致了极窄的机械线宽(小于10kHz)。将不同重量的物质沉积在空腔上,预测质量传感的最大分辨率为65±19zg,接近蛋白质和寡核苷酸的质量级。这意味着所提出的方法在生物医学领域的潜在应用,如寡核苷酸药物递送领域和人类蛋白质组项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phonon lasing enhanced mass sensor with zeptogram resolution under ambient conditions

High-sensitivity mass sensors under ambient conditions are essential in various fields such as biological research, gas sensing and environmental monitoring. In the current work, a phonon lasing enhanced mass sensor was proposed based on an optomechanical crystal cavity under ambient conditions. The phonon lasing was harnessed to achieve ultra-high resolution since it resulted in an extremely narrow mechanical linewidth (less than 10 kHz). Masses with different weights were deposited on the cavity, it is predicted that the maximum resolution for mass sensing can be 65 ± 19 zg, which approaches the mass order of a protein and an oligonucleotide. This implies the potential application of the proposed method in the biomedical fields such as oligonucleotide drug delivery area and the Human Proteome Project.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信