{"title":"关于距离为6的线性直径完美Lee码","authors":"Tao Zhang , Gennian Ge","doi":"10.1016/j.jcta.2023.105816","DOIUrl":null,"url":null,"abstract":"<div><p>In 1968, Golomb and Welch conjectured that there is no perfect Lee codes with radius <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> and dimension <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. A diameter perfect code is a natural generalization of the perfect code. In 2011, Etzion (2011) <span>[5]</span> proposed the following problem: Are there diameter perfect Lee (DPL, for short) codes with distance greater than four besides the <span><math><mi>D</mi><mi>P</mi><mi>L</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>)</mo></math></span> code? Later, Horak and AlBdaiwi (2012) <span>[12]</span> conjectured that there are no <span><math><mi>D</mi><mi>P</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> codes for dimension <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> and distance <span><math><mi>d</mi><mo>></mo><mn>4</mn></math></span> except for <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>)</mo></math></span>. In this paper, we give a counterexample to this conjecture. Moreover, we prove that for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, there is a linear <span><math><mi>D</mi><mi>P</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>,</mo><mn>6</mn><mo>)</mo></math></span> code if and only if <span><math><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>11</mn></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"201 ","pages":"Article 105816"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On linear diameter perfect Lee codes with distance 6\",\"authors\":\"Tao Zhang , Gennian Ge\",\"doi\":\"10.1016/j.jcta.2023.105816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1968, Golomb and Welch conjectured that there is no perfect Lee codes with radius <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> and dimension <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. A diameter perfect code is a natural generalization of the perfect code. In 2011, Etzion (2011) <span>[5]</span> proposed the following problem: Are there diameter perfect Lee (DPL, for short) codes with distance greater than four besides the <span><math><mi>D</mi><mi>P</mi><mi>L</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>)</mo></math></span> code? Later, Horak and AlBdaiwi (2012) <span>[12]</span> conjectured that there are no <span><math><mi>D</mi><mi>P</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> codes for dimension <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> and distance <span><math><mi>d</mi><mo>></mo><mn>4</mn></math></span> except for <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>)</mo></math></span>. In this paper, we give a counterexample to this conjecture. Moreover, we prove that for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, there is a linear <span><math><mi>D</mi><mi>P</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>,</mo><mn>6</mn><mo>)</mo></math></span> code if and only if <span><math><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>11</mn></math></span>.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"201 \",\"pages\":\"Article 105816\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316523000845\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523000845","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On linear diameter perfect Lee codes with distance 6
In 1968, Golomb and Welch conjectured that there is no perfect Lee codes with radius and dimension . A diameter perfect code is a natural generalization of the perfect code. In 2011, Etzion (2011) [5] proposed the following problem: Are there diameter perfect Lee (DPL, for short) codes with distance greater than four besides the code? Later, Horak and AlBdaiwi (2012) [12] conjectured that there are no codes for dimension and distance except for . In this paper, we give a counterexample to this conjecture. Moreover, we prove that for , there is a linear code if and only if .
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.